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Abstract

It was recently shown that radiation, conduction and convection can be combined within a

single Monte Carlo algorithm and that such an algorithm immediately benefits from state-of-

the-art computer-graphics advances when dealing with complex geometries. The theoreti-

cal foundations that make this coupling possible are fully exposed for the first time, support-

ing the intuitive pictures of continuous thermal paths that run through the different physics at

work. First, the theoretical frameworks of propagators and Green’s functions are used to

demonstrate that a coupled model involving different physical phenomena can be probabil-

ized. Second, they are extended and made operational using the Feynman-Kac theory and

stochastic processes. Finally, the theoretical framework is supported by a new proposal for

an approximation of coupled Brownian trajectories compatible with the algorithmic design

required by ray-tracing acceleration techniques in highly refined geometry.
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1 Introduction

1.1 The proposition

In corpuscular physics, radiative transfer can be described in the framework of the linear

Boltzmann theory for photon transport and this leads quite naturally to path-space formula-

tions. The Monte Carlo (MC) method then allows to estimate the quantity of interest by sam-

pling the paths according to their probability law so as to identify the contributing boundary

conditions or sources. This statistical method is the only one able to provide an unbiased esti-

mate along with its statistical uncertainty. Furthermore, as MC methods are able to handle

complex integration domain (spatial, angular, spectral. . .), it is widely used as a reference

method. Finally, the insensitivity of the method to the size and level of refinement of the geo-

metric scenes and volumic heterogeneities (see, for example, [1–4]) has further widened its

applicability, up to the industrial scale.

In the present paper, we give the theoretical basis for extending MC methods to problems

including coupled linear heat transfers. We aim at providing a complete framework for

describing, in a single MC algorithm, the coupled energy transfers as conductive, convective

and radiative paths, while retaining the flexibility of standard MC methods applied to linear

transport theory.

Our standpoint being here theoretical, we will not consider any implementation associated

with a specific system in practice. Starting from earlier developments [5], successful implemen-

tations have already been reported for several practical heat transfer applications. For instance,

using this framework to model detailed thermal transfers in cities has been proposed as a way

to improve climate services [6]. Applied works are also in progress in complex cooling systems

design such as power electronic systems that are cooled by air or two-phase exchangers [7, 8],

thermal receivers in concentrated solar power plants [9, 10], electric motors, or thermal hous-

ing issues. . . On a more theoretical level, [11–13] explores the benefits of propagating the

adjoint model and proposes suitable computational implementations: it is a matter of using

properties of MC methods that allow to estimate source influences in the sense of Green’s the-

ory. Considering implementation and performance of statistical methods, [14, 15] demon-

strate computational insensitivities to geometrical complexity on engineering applications in

porous media. These works are mostly based on a free-licensed library (the Stardis project

[16]) which implements most of the elements presented below. Although their common theo-

retical foundations are based on traditional linear physics, there is no written work yet that

combines them into a unique comprehensive framework, and fully exposes why and how MC

implementations of coupled heat transfers are now possible.

With this framework, the full power of the method is then made available both for compu-

tations and analysis. In the following, the idea of thermal paths is built up progressively using

different formal propositions, each of which is translated into a corresponding algorithm. In

the end, the physical images generated by our proposition should allow physicists and engi-

neers to renew their interpretation of the coupling of heat transfers in a given system. It may

also open didactic perspectives that will be discussed in forthcoming articles in educational

sciences.

1.2 Related works

Well beyond the work on kinetic models, there has long been an explicit intention to give a

probabilistic interpretation to the linear differential equations of physics (including, in particu-

lar, those relating to heat transfer in material media). As a precursor, the famous papers by

Courant, Friedrichs and Lewy published in 1928 (translated into English and republished in
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1967) [17, 18] sketched the first ideas of a statistical calculation of physical quantities by bring-

ing together random walks and boundary value problem of elliptic equations. A major advance

in this field was made by Feynman and Kac when they formally wrote the solutions of a class

of parabolic differential equations as an expectation taken over stochastic processes. This

immediately opened up the possibility of treating a set of linear problems initially formulated

in deterministic terms, through the sampling of Brownian path space [19, 20]. This was fol-

lowed by a large number of applications in different fields of physics associated with constant

and regular developments of Monte Carlo methods for solving linear differential equations;

the interested reader can explore the citation trees starting, for example, from [21–26]. Con-

nections are direct with the literature of Monte Carlo methods for solving linear algebraic sys-

tems when space-time discretization schemes are used as numerical approximations (see for

example the seminal work of [27]).

Regarding the diffusion equation (which is the usual representation of energy conduc-

tion phenomena), the random Walk on Sphere (WoS) algorithm introduced in [28] was

immediately perceived as a conceptual breakthrough due to its astonishing convergence

properties and became quickly a very popular method. For a Brownian process, its principle

is to sample a first passage point on the largest sphere contained in the bounded domain

(centered around the considered point) by probabilizing the Green’s function of the spatio-

temporal diffusion operator. From this principle, many nice works were born based on

comparable ideas to deal with situations with heterogeneous diffusion coefficients, or to

improve near-wall approximations, or even to extend to other types of elementary primi-

tives [29–36].

More specifically focused on applications to heat conduction phenomena, Hji-Sheikh and

Sparrow [37] popularized the concept of floating random walk [38], meaning that it is possible

to get rid of spatial grids previously introduced as a support for numerical resolution (meshless

methods). This work has rapidly percolated into the field of numerical computation (see for

example [39, 40]) from which many improvements have been developed such as the possibility

to treat anisotropic media [41], to take into account all types of boundary conditions (Robin or

Newman conditions) [42] or to include spatial dependencies on the conductivity tensor and

the source field [43]. For a more exhaustive entry in the subject, the last editions of Ozisik’s

book compile a state of the art of Monte Carlo methods for thermal conduction [44]. Echoing

quite naturally the applicative needs for tackling heat transfer in fluids, several works have

extended the previous proposals to cases where energy transfers are no longer only conductive

but result from advecto-diffusive phenomena [45–47]. Alternative approaches led to somewhat

different Monte Carlo algorithms for heat conduction based on the linear Boltzmann equation,

which is known to give back the diffusive phenomenology in the limit of low Knudsen num-

bers [48, 49].

Given the well-known ability of Monte Carlo methods to deal efficiently with complex

geometries, different authors have proposed to use this statistical approach to tackle thermal

conduction problems when geometrical refinements of the supporting scenes make the usual

numerical methods difficult to implement, if not merely unusable [50–52]. However, when it

comes to extending the idea to coupled thermal phenomena, there are no statistical proposals

in the literature that manage to retain both the flexibility and the decisive scaling properties.

Some works in the field of conducto-radiative coupling are quite relevant and allow consider-

able conceptual advances [53–57]—but they are somewhat distant from adjoint Monte Carlo

methods.

To our knowledge, apart from the contributions that allowed the development of the pres-

ent framework, no coupled conducto-convecto-radiative problem treated in a single Monte

Carlo algorithm in realistic geometry has been proposed so far.
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1.3 The theoretical framework

In this framework, the objective is to estimate a given quantity at so-called “probe points” such

as the temperature at a given point in space at a given time. Such probes can be as well quanti-

ties integrated over time, surface and volume, in which case the integral is estimated statisti-

cally, without solving the detailed integrand. It is therefore fundamentally different from the

“swarm” MC algorithms [58] or “direct” algorithms [59] that aim to evaluate the whole field

but are limited in their capacity to tackle high levels of geometrical, temporal or phenomeno-

logical complexity.

The main question is then to express the temperature at any location as the expectation of a

random variable in the pure filiation of the MC method as it is used in linear transport physics.

Indeed, expressing this quantity as a definite integral, which can be considered as a unique sta-

tistical estimator, is the guarantee that all the good properties of the method are preserved.

This practice of the MC method presents the advantage of preserving an intuitive understand-

ing by analogy with the underlying physics, while systematically providing the associated for-

malisation (for foundational references, see [60, 61]).

In Section 3 “Linearity and Propagators”, we show how to build this expectation for a par-

ticular physical study case, using propagation formalism [62–65]. The objective is to express

the quantity of interest at the probe point, as an integral over the boundary conditions (here

“boundary conditions” comprise the edge conditions and the initial condition) and the sources

in the field, using a propagator: the role of the propagator is to quantify the relative contribu-

tions by the boundary conditions and by the sources. Here, the corresponding formulations

are backward formulations and are generally built using adjoint-based methods. These integral

formulations are then reformulated as expectations in order to design MC algorithms. At this

stage, the generality of the approach, which simply reflects the essential property of linear

physics, should be distinguished from the ability to produce explicit calculations (in the analyt-

ical sense), most often limited to academic configurations where the propagator is explicitely

known [64, 66–73]. Many works have proposed quite useful and interesting extensions, some

of them in terms of applicability domains [34–36, 38, 74–79], but, as far as sampling is con-

cerned, addressing problems with high geometrical complexity remains either very cumber-

some or impractical.

To circumvent these difficulties, we turn to the theory of Stochastic Processes [80]. Building

upon the work of Feynman and Kac on the statistical representations of parabolic equations

[19, 20, 81, 82], we show how the temperature at the probe point can also be expressed as an

expectation over a stochastic process. Each realization of the process is a path that starts at the

probe point and ends at a boundary condition or at a source, thereby sampling the various pos-

sible contributions to the quantity of interest. Averaging a large number of contributions sam-

pled from either the propagator or the stochastic process yields an unbiased estimate of the

same expectation, that is, both methods converge to the very same value, although by sampling

different path-spaces. This strict equivalence means that stochastic processes can be used

instead of propagators, yielding two important advantages: first, stochastic processes can be

sampled efficiently even in the presence of complex geometry, and second, since different pro-

cedures can be designed to sample a given stochastic process, algorithms can be optimized.

In the part of MC literature that discusses Green’s formalism or stochastic processes, the

question of coupling phenomenologies of various physics is not an issue that is addressed as

such, and this is for very different reasons in each case. On the one hand, in Green’s formalism,

coupling by sources is self-evident due to the formalism itself, and there are no conceptual dif-

ficulties associated to this question. Yet, from an implementation point of view, if MC propos-

als are only based on this formalism, they are essentially limited to academic cases and do not
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fit in the present framework. On the other hand, in the stochastic processes formalism, the

path description conveys an intuitive picture by analogy with corpuscular tracking, but this

picture remains narrowly limited to the phenomenology that is being treated. In this case, the

coupling between different phenomenologies is an issue that has no self-evident formal trans-

lation. As a consequence, proposals of MC probe point algorithms for solving coupled thermal

transfers are scarce in the literature.

Any theoretical framework that claims to deal with coupled thermal transfers by MC must

articulate how paths should be sampled at the coupling locations. We make an extensive use of

the double randomization principle [83, 84] as it allows the sampling procedure to rely on a

local description of the probabilistic model at each step, including at the coupling locations,

whereas the integral approach of Feynman-Kac is built upon a global understanding of the

physical subsystems and is hence much more challenging to implement.

1.4 The particular model supporting the presentation of the theoretical

development

A particular heat transfer model has been chosen to support the exposition of the framework.

It is described in Section 2 and summarized in Eq (6). This choice of model is by no means

limiting, and various other choices could have been made, such as those described in [10, 14].

Each fundamental element of the proposal will be described in a general manner, and its

translation and consequences illustrated in this specific case. In particular, all the choices that

aim at preserving the good properties of the MC method, that is, its inherent power of analysis

and computational practicability (insensitivity to geometrical refinements, ease of

implementation. . .) will be emphasized. This practicability is allowed by the tools developed

for image synthesis: ray-tracing and grid acceleration, such that the computation time is

almost insensitive to the degree of refinement of geometrical data. As it is crucial for us to pre-

serve the ability of the MC method to scale up to infinite geometric complexity, we ensure that

our algorithms are compatible with the well-established tools developed in the computer

graphics community. This implies that the interaction between the algorithms and the geome-

try must essentially rely on scanning the scene through state-of-the-art ray-surface intersectors

[85–87]. To ensure both compatibility with ray-surface intersectors and flexibility of imple-

mentation, we show in the last part that the practical implementation of MC algorithms on

any geometry requires to formulate an approximation of the description of Brownian motions.

The proposed approximation is theoretically justified and validated on different application

cases. Notwithstanding, it could easily be replaced or modified in case of specific needs.

2 The thermal model

The thermal model used below for illustrative purposes is fully described in the present section.

Throughout the text, the symbol θ is reserved to designate temperatures (with notably

extended meanings for the radiative model). For all other symbols, we give a full nomenclature

in S1 File.

The conductive and convective transfers are linear and the radiative transfer is linearized

around a reference temperature θref. The thermophysical parameters are (possibly constant)

functions of space. The geometry is arbitrary and the spatial representations are three-dimen-

sional. If necessary, the formalism also allows to reduce the descriptive dimension according

to the symmetries of the system.

These choices are motivated by our intention of proposing a linear heat transfer model that

gathers most of the conceptual difficulties with respect to the objective of the paper: demon-

strating how the coupling between the transfer modes is carried out in a probabilized
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formalism. Of course, this could have been done with somewhat different models (especially

for the convective and radiative parts). For example, here, radiation takes place in a semi-trans-

parent medium rather than exchanging between opaque surfaces; the convective cavities are

described with an unsteady model and perfectly homogeneous temperature, rather than by an

advecto-diffusive description of the temperature; Neumann-type boundary conditions (heat

flux imposed at the boundary), as well as situations with volumic power sources only, are left

aside (their consideration is a bit different but is not a source of difficulty).

As an example, Fig 1 presents a geometrical abstraction of a configuration with solid sub-

systems and fluid cavities where the three types of heat transfers can operate in a coupled man-

ner. This type of configuration, associated with the chosen model, depicts a whole diversity of

situations encountered in physical or technological questions.

2.1 Radiative heat transfer

From the point of view of radiative transfer, the system is entirely semi-transparent (both in

the solid and fluid parts). The radiative transfer equation that governs this phenomenology

allows to take into account the effect of absorption and scattering of radiation within the sys-

tem, even where optical properties are heterogeneous.

The radiative transfer equation (RTE) is given with the following two restrictions:

• The refractive index is uniform throughout the system (no ray curvature within solids, no

refraction/reflection at solid/fluid interfaces). The writings are simplified and none of our

conclusions would be impeded by alleviating this assumption.

• The equation is linearized around the specific equilibrium intensity at a temperature θref.

This assumption is fundamental to remain in the framework of linear heat transfers, and it is

widely used in applications where the temperature differences in the system are small com-

pared to the absolute temperatures.

Under these assumptions, the radiative model is given by the usual radiative transfer equa-

tion written in monochromatic specific intensity In � Inð~x;~u; tÞ at position~x, in direction~u at

time t and at frequency ν (Eq (64) in Appendix A).

Fig 1. Illustration of a conducto-convecto-radiative configuration. The solid domainOS is shown in gray, m fluid

cavitiesOFi
are shown in light blue, and the surrounding fluid cavityOF1 is shown in dark blue. Radiation is present

within the whole scene and the system is entirely semi-transparent. Conduction takes place only in solids.

https://doi.org/10.1371/journal.pone.0283681.g001
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To ensure formal coherence for the coupling with the other transfer modes, we replace the

specific intensity by its translation in terms of radiance temperature y
n

R;~u (also known as bright-

ness temperature, which is widely used in the experimental field). Appendix A presents how

the version written in monochromatic radiance temperature in the~u direction reads:

~u:~rynR;~u ¼ � kney
n

R;~u þ knayþ kns

Z

S2

pnSð~uj~u
0Þd~u 0ynR;~u 0 ð1Þ

where kna, kns , k
n
e ¼ kna þ kns are the monochromatic absorption, scattering and extinction coeffi-

cients, pnS is the scattering phase function, and S2
denotes the unit sphere in a three dimension

space.

It should be noted that even if the radiative equation is taken to be stationary, the radiance

temperature y
n

R;~uð~x; tÞ depends on time because θ evolves in the system due to the coupling

with conductive and convective processes.

The energy conservation equations for solid and fluid parts (heat equation for a semi-trans-

parent medium) are formulated below in such a way that the radiative contribution appears

through the radiative power density cR � cRð~x; tÞ defined as the difference between the

absorbed and the emitted power densities. Under the stated assumptions, it can be written in

the following form (see Appendix A):

cR ¼ z

Z þ1

0

pNðnÞdn
Z

S2

1

4p
d~u y

n

R;~u � y
� �

ð2Þ

where z ¼ 16kasy
3

ref
is the linearized radiative transfer coefficient and pN(ν) is defined by Eq

(75).

The complete formulation of the radiative model then reads:

cR ¼ zðyR � yÞ

yR ¼

Z

S2

1

4p
d~u yR;~u

~u:~ryR;~u ¼ � keyR;~u þ kayþ ks

Z

S2

pSð~uj~u 0Þd~u 0yR;~u 0

8
>>>>>>><

>>>>>>>:

ð3Þ

The temperature θR is often called the radiative temperature (the angular integral of the radi-

ance temperature).

To close the radiative problem, an incident radiance temperature yR;@OR ;~u
is imposed at a fic-

titious boundary @OR enclosing the whole domain, with~u entering the domain (~u 2 S2

þ
).

2.2 Heat equation for solid sub-domain

The thermal model for the solid is established by combining diffusive energy transfer with the

radiative source term described above. The conductive energy flux density vector is classically

given by the Fourier law~j ¼ � l~ryS in which λ is the thermal conductivity of the material and

yS � ySð~x; tÞ is the local temperature of the solid.

Thus, the local energy balance in the semi-transparent solid is written as follows:

rC@tyS ¼ �
~r:ð� l~rySÞ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
conductive exchange

þ zðyR � ySÞ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
radiative exchange

ð4Þ
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where ρ and C are the mass density and the heat capacity of the material. z and θR were defined

in the previous section.

As illustrated in Fig 1, the material medium under consideration is not necessarily con-

nected but is bounded by a surface denoted @OS where two types of conditions can be imposed

(Neumann-type boundary conditions are not considered in this text):

• Dirichlet-type boundary conditions: θS = θD on the interface @OD where θD is the imposed

temperature,

• Robin-type boundary conditions: � l~n:~ryS ¼ � l
@yS
@n ¼ hF yF � ySð Þ on the complementary

surface to @OD noted @OSn@OD.

~n is the incoming normal to the solid surface, θF is the temperature of the fluid whose model

will be given in the following section and hF is the local convective exchange coefficient.

Robin’s condition specifies the coupling constraint between the solid and the fluid by simply

stating the continuity of the flux at the solid-fluid interface.

The initial condition at time tI is generically noted yI � yIð~xÞ.

2.3 Heat equation for fluid sub-domain

As illustrated in Fig 1, the fluid domain is composed of m cavities noted OFi
ði 2 f1; 2; . . . ;mgÞ

and of a domain OF1 partially or totally enclosing the OS solid domain. The fluid domain is

therefore the union of these m + 1 domains:

OF � OF1
[ OF2

[ � � � [ OFm
[ OF1

In each cavity OFi
(of volume VFi

) and each surface @OFi
, the fluid is assumed to be perfectly

mixed by convection at each instant and the heat flux density at the solid walls is modeled by a

linear transfer law (Newton’s law). Under this assumption, the temperature of the fluid con-

tained in the ith cavity, noted yFi
is spatially uniform and varies only as a function of time. The

mass density ρi, the heat capacity Ci and the linearized radiative heat transfer coefficient zi are

also spatially uniform.

The temperature of the fluid contained in the enclosing cavity OF1 of surface @OF1 is

imposed, it is noted yF1 and can depend on time.

The energy balance of the semi-transparent fluid inside the ith cavity is as follows:

riCiVFi

dyFi

dt
ðtÞ ¼ zi

Z

OFi

ðyRð~xR; tÞ � yFi
ðtÞÞd~xR

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
radiative exchange

þ

Z

@OFi

hFð~ySÞðySð~yS; tÞ � yFi
ðtÞÞd~yS

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
convective exchange

ð5Þ

z and θR are defined in the section on radiative transfer. The initial condition at time tI is θI.

In this correlative model, which is widely used in industrial thermal issues, the convective

exchange coefficient hF summarizes the phenomenological complexity of the exchanges

between the fluid and the wall (here hF depends explicitly on the position at the wall; it may

also depend on time with no additional difficulties). Many works in the literature aim at pro-

viding correlations adapted to different study cases, generally parameterized with a set of

dimensionless numbers [88, 89]. As mentioned above, diffusion-drift models for temperature

could have been chosen without changing our main message. As an example, the work

described in [14] is focused on the MC resolution of convective-conducting-radiative coupled

models using a local heat equation for the fluid (with a prescribed velocity field).
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2.4 Summary: The coupled model

Let us define, for any domain OJ: the adherence �OJ ¼ OJ

S
@OJ and the interior

�
OJ ¼ OJ n @OJ . For boundary surfaces, the complementary of @OJ to @OK is denoted

@O
K
J ¼ @OJ n @OK .

As illustrated in Fig 1, the domain consists of:

• an enclosing fluid cavity OF1 of boundary @OF1 , in which the temperature yF1 is known;

• m fluid cavities noted OFi
of boundary @OFi

;

• a solid domain OS of boundary @OS ¼ @OD [ @O
D
S with a Dirichlet condition on @OD and a

Robin condition on @O
D
S ¼ @O

D
F1 [

m
i¼1
@O

D
Fi

;

• a fictitious boundary to handle the radiative boundary condition @OR.

Let θ denote the spatio-temporal temperature field, solution of the following system:

a) Solid & Fluid

y � yS; ~x 2 �OS; t 2�tI;þ1½

y � yFi
; ~x 2

�
OFi

; t 2�tI;þ1½

y � yF1 ; ~x 2
�
OF1 ; t 2�tI;þ1½

8
>>><

>>>:

ð6aÞ

b) Solid, i 2 {1, . . ., m}

rC@tyS ¼ �
~r:ð� l~rySÞ þ zðyR � ySÞ ;~x 2

�
OS; t 2�tI;þ1½

yS ¼ yI ;~x 2 �OS; t ¼ tI
yS ¼ yD ;~y 2 @OD; t 2�tI;þ1½

� l
@yS

@n
¼ hF yFi

� yS

� �
;~y 2 @OD

Fi
; t 2�tI;þ1½

� l
@yS

@n
¼ hF yF1 � ySð Þ ;~y 2 @OD

F1 ; t 2�tI;þ1½

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð6bÞ

c) Fluid, i 2 {1, . . ., m}

riCiVFi

dyFi

dt
¼ zi

Z

OFi

ðyRð~xR; tÞ � yFi
ðtÞÞd~xR

þ

Z

@OFi\@OS

hFð~ySÞðySð~yS; tÞ � yFi
ðtÞÞd~yS

þ

Z

@OFi\@OD

hFð~ySÞðyDð~yS; tÞ � yFi
ðtÞÞd~yS;~x 2

�
OFi

; t 2�tI;þ1½

yFi
¼ yI;~x 2

�
OFi

; t ¼ tI

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð6cÞ
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d) Solid & Fluid

yRð~x; tÞ ¼

Z

S2

1

4p
d~uyR;~uð~x; tÞ ;~x 2

�
O; t 2�tI;þ1½

~u:~ryR;~u ¼ � keyR;~u þ kayþ ks

Z

S2

pSð~uj~u0Þd~u 0yR;~u 0 ;~x 2
�
O;~u 2 S2

; t 2�tI;þ1½

yR;~u ¼ yR;@OR;~u
;~y 2 @OR;~u 2 S

2

þ
; t 2�tI;þ1½

8
>>>>>><

>>>>>>:

ð6dÞ

In the following sections, we present the two fundamental proposals that will permit:

• to express the temperature yð~x; tÞ at position~x at time t, solution of System (6), as the expec-

tation of a random variable. This first proposal proceeds from the rewriting of the problem

in Green’s formalism. The theory will first be given in full generality (Section 3), then applied

for each of the three heat transfer modes separately (Section 4), and finally to the coupled

model (Section 5);

• to define the thermal paths that ensure that this random variable can be sampled by a

MC method. This second proposal introduces the notion of trajectory from the theory of

stochastic processes and yields the construction of a path space for sampling. The theory

and its application to the thermal model under consideration are first provided (Section

6), and then a practical proposition for sampling the conductive paths is developed (Sec-

tion 7).

3 Linearity and propagators

The objective of this section is to produce a probabilization of the expressions in order to write

the quantity of interest as the expectation of a random variable. The link with the MC method

is made explicite by pseudo-algorithms that describe the sampling procedure of this random

variable.

3.1 The formal proposition

The thermal sub-models described in the previous section by Eqs (3), (4) and (5), along with

their respective boundary conditions, are all linear and can be formally written in a similar

way. This leads to a system of linear integro-differential equations representing a well-posed

boundary value problem, which can be written generically in the following operational form:

cð~w; tÞ@t f ð~w; tÞ þ Lðf Þð~w; tÞ ¼ að~w; tÞfWð~w; tÞ ; t 2 ½tI;þ1½ ; ~w 2
�
W

L@Wðf Þð~w; tÞ ¼ f@Wð~w; tÞ ; t 2�tI;þ1½ ; ~w 2 @W

f ð~w; tIÞ ¼ fIð~wÞ ; ~w 2 �W

8
>>>><

>>>>:

ð7Þ

where the temporal dimension of the problem is specifically marked and the corresponding

variable is noted t. The non-temporal part of the integration domain on which the model is

built can be of any dimension and noted W; the vector w represents a way to name a point in

this space. Depending on the model, W may simply be the geometric space, as in the model

for solids, or the space of locations and directions (phase space) in the case of radiative trans-

fer. The particular case where this space has dimension zero can be treated without difficulty

and is not the object of a specific development; it is typically the case for the fluid model. L and

L@W are homogeneous and linear integrodifferential operators (here homogeneity means that
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there are no constant terms). fW , f@W and fI are source terms with the same dimension as f (they

are assumed to be prescribed functions for the moment).

Functions cð~w; tÞ and að~w; tÞ are part of the problem definition and they are known. f, fW ,

f@W and fI are real-valued functions.

Based on Eq (7), we construct a generic form for the sub-models.

Restrictions. We will restrict the proposition to models which satisfy the second principle,

or H theorem, as it is understood in thermodynamics. More precisely, we only consider sys-

tems that exhibit an equilibrium solution (understood here as the uniformity of the f function)

for particular conditions on the sources. In the generic framework of Eq (7), this implies that

the model must satisfy the following property:

8a1; a2; a3 2 R; fW ¼ a1; f@W ¼ a2; fI ¼ a3 ) minða1; a2; a3Þ < f ð~w; tÞ < maxða1; a2; a3Þ ð8Þ

The thermal model that has been presented above in System (6) satisfies this property. Simi-

lar choices of generic models satisfying this equilibrium property could have been made. To

provide a counter-example, if the balance equation for the solid sub-domain was a diffusion

equation with a prescribed power source instead of the radiative term z(θR − θS) (for example,

the contribution of an electric heater, without any loss) the equilibrium condition Eq (8) can

not be satisfied. The same conclusion is obtained with a non-zero imposed flux (Neumann

boundary condition). This does not mean that it is not possible to probabilize these models up

to a Monte-Carlo implementation, but the strategies to be implemented for this are quite spe-

cific and lead to ad-hoc propositions that will be detailed in dedicated papers (some proposi-

tions are already implemented in the Stardis library).

3.2 Expression for f ð~w; tÞ
Since the model is linear, one can write the solution of Eq (7) as

f ð~w; tÞ ¼ þ

Z

W
gIð~w; tj~wI; tIÞfIð~wIÞd~wI

þ

Z

@W

Z t

tI

g@Wð~w; tj~w@W; t@WÞf@Wð~w@W; t@WÞdt@Wd~w@W

þ

Z

W

Z t

tI

gWð~w; tj~wW; tWÞfWð~wW; tWÞdtWd~wW

ð9Þ

where the functions gI, g@W and gW are the propagators for the different sources (respectively,

the initial condition, on the surface, in the volume).

Reading Eq (9) is quite intuitive as it combines the concepts of superposition and causality:

the observable f at point ~w and time t results from the effects of three sources in the sense of

Green’s theory (that is, the inhomogeneous (right-hand) terms in Eq (7)):

• the effect of the initial condition fI at any point in phase space ~wI 2W and at time tI, pro-

vided by the propagator gIð~w; tj~wI; tIÞ,

• the effect of the boundary conditions f@W at any point on the edge of phase space ~w@W 2 @W
and at any time t@W 2 ½tI; t�, provided by the propagator g@Wð~w; tj~w@W; t@WÞ,

• the effect of the source fW at any point in phase space ~wW 2W and at any time t@W 2 ½tI; t�,
provided by the propagator gWð~w; tj~wW; tWÞ.
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3.3 The Green function gð~w; tj~w 0; t0Þ
In most non-academic systems, it is not possible to obtain the explicit form of the propagators.

Nevertheless, propagators are the solution of linear mathematical models which can most

often be written without much difficulty. The production of adjoint models, as well as Green’s

formalism, traditionally provide a unifying technical framework for this purpose.

Hereafter we briefly describe the Green’s formalism approach in the case of Eq (7). Techni-

cally, the contribution of the sources are constructed from Dirac distributions and convolution

operators. Since the equation is linear, the solution f can be reconstructed by superposition

(see [62, 90–92] for more details).

From Eq (7), the following system is constructed:

cð~w; tÞ@tgð~w; tj~w 0; t0Þ þ LðgÞð~w; tj~w 0; t0Þ ¼ dð~w � ~w 0Þ dðt � t0Þ;

t; t0 2�tI;þ1½; ~w 2 �W ; ~w 0 2 �W

L@wðgÞð~w; tj~w 0; t0Þ ¼ 0; t; t0 2�tI;þ1½; ~w 2 �W ; ~w 0 2 @W

gð~w; tj~w 0; t0Þ ¼ 0; t < t0; ~w 2 �W ; ~w 0 2 �W

8
>>>>>>><

>>>>>>>:

ð10Þ

where the volume source fW have been replaced by a Dirac distribution δ in phase space and

time, centered at ð~w 0; t0Þ, and where the boundary and initial conditions have been made

homogeneous (there is no source except fW). Intuitively, gð~w; tj~w 0; t0Þ can be considered as the

effect of a point source at ð~w 0; t0Þ 2 �W � R on the quantity of interest f at point ð~w; tÞ. The last

line in Eq (10) ensures causality—it simply reflects the idea that an effect cannot occur before

its cause—and at the same time, it closes the problem by providing initial conditions.

Then, propagators gI, g@W and gW are directly constructed from g:

gIð~w; tj~wI; tIÞ ¼ cð~wI; tIÞgð~w; tj~wI; tIÞ

gWð~w; tj~wW; tWÞ ¼ að~wW; tWÞgð~w; tj~wW; tWÞ

g@Wð~w; tj~w@W; t@WÞ does not have a generic expression without knowledge of the operator

L@W ; it will be addressed on a case-by-case basis later on.

3.4 Probabilistic reformulation

The following quantities are introduced:

pI � pIð~w; tjtIÞ ¼

Z

W
gIð~w; tj~wI; tIÞd~wI

p@W � p@Wð~w; tjtIÞ ¼

Z

@W

Z t

tI

g@Wð~w; tj~w@W; t@WÞdt@Wd~w@W

pW � pWð~w; tjtIÞ ¼

Z

W

Z t

tI

gWð~w; tj~wW; tWÞdtWd~wW

ð11Þ

Using the restriction Eq (8) into Eq (9) leads to:

pI þ p@W þ pW ¼ 1 ð12Þ

Indeed, Green functions only depend on the linear and homogeneous operator parts in Eq

(7) (left-hand side of the equations). This property can be demonstrated by considering any
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value for the sources, for example a1 = a2 = a3. Eq (12) enables us to consider pI, p@W and pW as

probabilities in the following.

Let us define the following independent random variables (r.v.):

B1ðpÞ; :::;BnðpÞ are n independent Bernoulli r:v: with parameter p
~WI is a r:v: with distribution p~WI

ð~w; tj~wI; tIÞ

ð~W @W;T@WÞ is a paired r:v: with distribution pð~W @W ;T@WÞ
ð~w; tj~w@W; t@WÞ

ð~WW;TWÞ is a paired r:v: with distribution pð~WW ;TW Þ
ð~w; tj~wW; tWÞ

where probability density functions are:

p~WI
ð~w; tj~wI; tIÞ ¼ gIð~w; tj~wI; tIÞ=pIð~w; tjtIÞ

pð~W @W ;T@W Þ
ð~w; tj~w@W; t@WÞ ¼ g@Wð~w; tj~w@W; t@WÞ=p@Wð~w; tjtIÞ

pð~WW ;TW Þ
ð~w; tj~wW; tWÞ ¼ gWð~w; tj~wW; tWÞ=pWð~w; tjtIÞ

Eq (9) can then be reformulated to write f ð~x; tÞ as the expectation of a random variable F:

f ¼ E½F� ð13Þ

with

F ¼ B1ðpIÞfIð~WIÞ þ ð1 � B1ðpIÞÞfB2ðp2Þf@Wð~W @W ;T@WÞ þ ð1 � B2ðp2ÞÞfWð~WW;TWÞg ð14Þ

where p2 ¼
p@W
1� pI

.

3.5 Monte-Carlo algorithm

Based on the above formulations, it is straightforward to construct the sampling algorithm for

F: i) sample one of the three types of sources according to the probabilities pI, p@W and pW , ii)

sample a location and possibly a time according to the corresponding probability density func-

tion and iii) keep the value of the source at this sampled location and time (see Algorithm 1).

The MC algorithm estimating f ¼ E½F� consists in sampling a set of realizations f̂ of F and

estimating f as the arithmetic mean of this set.

Algorithm 1: Sampling algorithm for the random variable F at phase space position ~w and

time t. f̂ is the corresponding realization of the random variable
Sample r1 uniformly on [0, 1];
if r1 < pI then
Sample ~wI according to the law of ~WI;

f̂ ¼ fIð~wIÞ;
else
Sample r2 uniformly on [0, 1];
if r2 < p2 then
Sample ð~w@W; t@WÞ according to the law of ð~W @W;T@WÞ;

f̂ ¼ f@Wð~w@W; t@WÞ;
else
Sample ð~wW; tWÞ according to the law of ð~WW;TWÞ;

f̂ ¼ fWð~wW; tWÞ;
Fig 2 illustrates the proposition of probabilization in the simple case where the problem is

only time-dependent (there is no integration over W in this case), as for instance in the fluid

sub-domain.
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4 Implementation of the uncoupled thermal model

The previous section has exposed our probabilization strategy based on the propagative for-

mulation of the solutions of linear models when the equilibrium condition Eq (8) is met. We

propose here to directly apply the procedure on each submodel in Eq (6), considered indepen-

dently (i.e decoupled from each other). In this section, we will therefore consider that, for each

submodel, crossed variables ensuring the coupling are prescribed (for instance, if we consider

a fluid cavity, the solid temperature θS at the interface is assumed to be known).

4.1 Fluid sub-domain

Eq (6c) details the contributions on the fluid sub-domain boundary @OFi
so that the coupling

can be expressed unequivocally. But the distinction between the different parts of the bound-

ary (@OFi
\ @OD and @OFi

\ @OS) is useless here as we aim to first formalize the uncoupled

problem by assuming that the temperature is known on all of them. Thus, we just start from

the generic form provided by Eq (5) in which we write the development as if temperatures θR

and θS were known and prescribed time-space functions.

This balance equation and the corresponding probabilization can be written in exactly the

same way as in Fig 2. To obtain the final propagative form, there is however an additional step

due to the fact that the source term of the differential equation involves integral terms. Appen-

dix B describes these developments that finally lead to the expression of the fluid temperature:

yFi
ðtÞ ¼ gFi ;I

ðtjtIÞyI

þ

Z t

tI

Z

@OFi

gFi ;S
ðtj~yS; tÞySð~yS; tÞd~ySdt

þ

Z t

tI

Z

OFi

gFi ;R
ðtj~xR; tÞyRð~xR; tÞd~xRdt

ð15Þ

Fig 2. Implementation example for the probabilization proposition in the case of a problem that is only time-

dependent.

https://doi.org/10.1371/journal.pone.0283681.g002
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where gFi, I, gFi, S and gFi, R stand for the propagation to fluid subvolume OFi
from initial con-

ditions, surface (Solid) and volume (Radiation) respectively.

A random variable whose expectation is the temperature yFi
ðtÞ is constructed following the

proposition stated in the general case (Eq (7) to Eq (14)), applied to the particular case where

the state variable is only time-dependant (as in Fig 2):

yFi
ðtÞ ¼ E½YFi

ðtÞ� ð16Þ

with

YFi
ðtÞ ¼ B1ðp

Fi
I ÞyI

þð1 � B1ðp
Fi
I ÞÞfB2ðp

Fi
R ÞyRð

~XFi
R ;TFiÞ þ ð1 � B2ðp

Fi
R ÞÞySð

~YFi
S ;TFiÞg

ð17Þ

To simplify the presentation, the complete definition of the random variables and probabil-

ities involved in this equation are reported to Appendix B.

Algorithm 2 describes the sampling procedure forYFi
defined as above, and Fig 3 illustrates

corresponding typical realizations.

Algorithm 2: Sampling algorithm for the random variable YFi
defined by Eq (17) assuming

the functions θR and θS are known. ŷFi
is the corresponding realization of the random variable.

Sample r1 uniformly on [0, 1];
if r1 < pFi

I then
ŷFi
¼ yI;

else
Sample r2 uniformly on [0, 1];
if r2 < pFI

R then
Sample ð~xR; tÞ according to the law of ð~XFI

R ;TFI Þ;

ŷFi
¼ yRð~xR; tÞ;

else
Sample ð~yS; tÞ according to the law of ð~YFI

S ;TFI Þ;

ŷFi
¼ ySð~yS; tÞ;

Fig 3. Illustration of the three possible realizations forYFi
. Each realization represents one of the three

contributions that can be returned: initial temperature θI, a radiance temperature θR and a boundary temperature with

the solid θS. The notation (., t) means that the temperature of the fluid is not dependent on the location in the cavity

and that the probe can be positioned anywhere.

https://doi.org/10.1371/journal.pone.0283681.g003
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4.2 Solid sub-domain

For the solid sub-domain, we start from the model as described by Eq (6b). In the description

of the boundary conditions, temperatures θD and θF1 are known functions of time and space.

By contrast, temperatures yFi
result from the whole coupling dynamics. As above, we consider

that, here, they are prescribed and known.

In agreement with the general form of Eqs (7) and (10), the Green function gS �

gSð~x; tj~x0 ; t0Þ associated with Eq (6b) is solution of:

rC@ tgS �
~r:ðl~rgSÞ þ zgS ¼ dð~x � ~x0 Þdðt � t0Þ ; t 2�tI;þ1½;~x 2

�
OS

gS ¼ 0 ; t 2�tI;þ1½;~x 2 @OD

�
l

hF

@gS

@n
þ gS ¼ 0 ; t 2�tI;þ1½;~x 2 @O

D
F

gS ¼ 0 ; t < t0

8
>>>>>>>>><

>>>>>>>>>:

ð18Þ

The solid temperature can thus be written as:

ySð~x; tÞ ¼
Z

OS

gS;Ið~x; tj~xI; tIÞyIð~xIÞd~xI

þ

Z t

tI

Z

@OD
F

gS;@OD
F
ð~x; tj~yF; tFÞyFð~yF; tFÞd~yFdtF

þ

Z t

tI

Z

@OD

gS;@OD
ð~x; tj~yD; tDÞyDð~yD; tDÞd~yDdtD

þ

Z t

tI

Z

OS

gS;Rð~x; tj~xR; tRÞyRð~xR; tRÞd~xRdtR

ð19Þ

where:

• gS,I = ρCgS denote propagation from Initial condition,

• gS;@OD
F
¼ hFgS denote propagation from surfaces @O

D
F corresponding to a Robin condition. In

this case, θF takes the value yFi
of domain i to which~yF belongs,

• gS;@OD
¼ l

@gS
@n denote propagation from surfaces @OD which a Dirichlet boundary condition

(θD),

• gS,R = zgS denote propagation from volume radiation.

A random variable whose expectation is the temperature ySð~x; tÞ is constructed following

the proposition stated in the general case (Eqs (7) to (14)), with the domain W consisting in

the geometric space OS. It is thus possible to write:

ySð~x; tÞ ¼ E½YSð~x; tÞ� ð20Þ
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with

YSð~x; tÞ ¼ B1ðpS
I ÞyIð

~XS
I Þ þ ð1 � B1ðpS

I ÞÞB2ðpS
2
ÞyRð

~XS
R;T

S
RÞ

þð1 � B1ðpS
I ÞÞð1 � B2ðpS

2
ÞÞB3ðpS

3
ÞyFð

~YS
F;T

S
FÞ

þð1 � B1ðpS
I ÞÞð1 � B2ðpS

2
ÞÞð1 � B3ðpS

3
ÞÞyDð

~YS
D;T

S
DÞ

ð21Þ

To simplify the presentation, the definition of the random variables and probabilities involved

in this equation are reported to Appendix C.

For given values of~x and t, Algorithm 3 describes the sampling procedure for ΘS defined as

above and Fig 4 illustrates corresponding typical realizations.

Algorithm 3: Sampling algorithm for the random variable ΘS defined by Eq (21) assuming

the functions θR and θF are known. ŷS is the corresponding realization of the random variable.
Sample r1 uniformly on [0, 1];
if r1 < pS

I then
Sample ~xI according to the law of ~XS

I;

ŷS ¼ yIð~xIÞ;
else
Sample r2 uniformly on [0, 1];
if r2 < pS

2
then

Sample ð~xR; tRÞ according to the law of ð~XS
R;TS

RÞ;

ŷS ¼ yRð~xR; tRÞ;
else
Sample r3 uniformly on [0, 1];
if r3 < pS

3
then

Sample ð~yF; tFÞ according to the law of ð~YS
F;T

S
FÞ;

ŷS ¼ yFð~yF; tFÞ;
else
Sample ð~yD; tDÞ according to the law of ð~YS

D;T
SÞ;

ŷS ¼ yDð~yD; tDÞ;

Fig 4. Illustration of four realizations of YSð~x; tÞÞ: An initial condition θI at point~xI , a radiance temperature θR at

point ð~xR; tRÞ, a fluid temperature θF at time tF and a temperature θD imposed at the boundary at point ð~yD; tDÞ.
For clarity, we represent only one fluid cavity.

https://doi.org/10.1371/journal.pone.0283681.g004
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4.3 Radiative transfer in fluid and solid sub-domain

We start from the radiative transfer model described by Eq (6d): here phase space is the union

of the sets of positions and directions, and boundary conditions are given by the known func-

tion yR;@OR;~u
on the fictive surface @OR. The temperature θ which appears in the equation is

either a fluid temperature, or a temperature in the solid, and results from all the coupling

dynamics. As in the two previous paragraphs, we are going to consider first that θ is known

and prescribed so that we can build the probabilization on the uncoupled model.

In agreement with the general form of Eqs (7) and (10), the Green function gR �

gRð~x;~uj~x0 ; ~u0 Þ associated with the model in Eq (6d) is solution of:

~u:~rgR þkegR � ks

Z

S2

pSð~uj~u 0Þd~u 0gR ¼ dð~x � ~x 0Þdð~u � ~u0Þ; ~x 2
�
O; ~u 2 S2

gR ¼ 0 ; ~y 2 @OR; ~u 2 S2

þ

8
><

>:
ð22Þ

Radiance temperature in the fluid and solid domains is therefore written as:

yR;~uð~x; tÞ ¼
Z

O

Z

S2

gR;Að~x;~uj~xA;~uAÞyð~xA; tÞd~uAd~xA

þ

Z

@OR

Z

S2
þ

gR;@OR
ð~x;~uj~yR;~uRÞyR;@OR ;~uR

ð~yR; tÞd~uRd~yR

ð23Þ

where gR,A = gR(ke − ks) = gRka stands for the propagator from the temperature in the solid or

fluid volumes (Absorption) and gR;@OR
¼ gR stands for the propagator from the radiative

boundary condition on @OR.

A random variable whose expectation is the radiance temperature yR;~uð~x; tÞ is obtained fol-

lowing the proposition stated in the general case (Eqs (7) to (14)):

yR;~uð~x; tÞ ¼ E½YR;~uð~x; tÞ� ð24Þ

with

YR;~uð~x; tÞ ¼ BðpR
Að~x;~uÞÞyð~X

R
A; tÞ þ ð1 � BðpR

Að~x;~uÞÞÞyR;@OR ;~UR
ð~YR

R; tÞ ð25Þ

To simplify the presentation, the definition of the random variables and probabilities

involved in this equation are reported to Appendix D.

A new random variable is defined in order to formulate the temperature yRð~x; tÞ as an

expectation:

YRð~x; tÞ ¼ YR;~U ð~x; tÞ ð26Þ

where ~U follows a uniform law on the sphere, hence:

yRð~x; tÞ ¼
Z

S2

1

4p
d~uyR;~uð~x; tÞ ¼ E YRð~x; tÞ½ � ð27Þ

For given values of~x and t, Algorithm 4 describes the sampling procedure for ΘR defined as

above and Fig 5 illustrates corresponding typical realizations.

4.4 Summary

In this section, we have built probabilized forms for heat balance equation inside fluidic cavi-

ties, heat balance equation inside solid matrix and radiative transfer equation. This was done
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by partitioning the model: for each case, an uncoupled form was considered, i.e all the vari-

ables involved in the coupling between submodels were assumed to be known. Under this

assumption, we obtained a random variable whose expectation is the temperature of interest

within each submodel, with a corresponding sampling algorithm. Practical implementation of

these algorithms is not discussed at this point; it will be the object of Section 7. We focus now

on re-coupling the three submodels.

Algorithm 4: Sampling algorithm for the random variable ΘR defined by Eq (27) assuming

the function θ is known (depending on the location, yð~xA; tÞ corresponds to a fluid tempera-

ture or a solid temperature). ŷR is the corresponding realization of the random variable.

Sample ~u according to the law of ~U;
Sample r uniformly on [0, 1];
if r < pR

Að~x;~uÞ then
Sample ~xA according to the law of ~XR

A;

ŷR ¼ yð~xA; tÞ;
else
Sample (~yR,~uR) according to the law of (~YR

R, ~UR);

ŷR ¼ yR;@OR ;~uR
ð~yR; tÞ;

5 The coupling

Under the decoupling assumption, there exists for each submodel a random variable whose

expectation is the temperature we are looking for, with a corresponding sampling algorithm.

The key point is that we built formulations in which the re-coupling can now be done solely

through sources in Green’s sense, i.e through inhomogeneous terms in the descriptive equa-

tions. It will allow us to solve the whole coupled system by building random walks switching

from one algorithm to another; this translates in probabilistic terms how we handle the recur-

sivity of the implicit formulations.

To illustrate this question, the propagator equations are summarized below, keeping only

the basic structure of the partitioning/re-coupling (Eq (15) for the fluid temperature, Eq (19)

Fig 5. Representation of three realizations of ΘR: A radiance temperature imposed on the boundary yR;@OR ;~uR
at

point~yR (at this point, the boundary @OR coincides with @OS), a solid temperature θS at point~xS, and a fluid

temperature θF. We note~xA �~xS and yð~xA; tÞ � ySð~xS; tÞ if~xA 2 OS, and~xA �~xF and yð~xA; tÞ � yFð~xF ; tÞ ¼ yFðtÞ if

~xA 2 OF . For clarity, we represent here only one fluid cavity.

https://doi.org/10.1371/journal.pone.0283681.g005
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for the solid temperature, Eqs (27) and (23) for the radiative temperature):

yF ¼ gFi ;I
yI þ

Z

Dt[OF

dmgF;RyR þ

Z

Dt[@OF

dmgF;SyS

yS ¼

Z

OS

dmgS;IyI þ

Z

Dt[OS

dmgS;RyR þ

Z

Dt[@OD
F

dmgS;@OD
F
yF þ

Z

Dt[@OD

dmgS;@OD
yD

yR ¼

Z

S2[O[S2

dm
1

4p
gR;AyF=S þ

Z

S2[@OR[S2
þ

dm
1

4p
gR;@OR

yR;@OR

8
>>>>>>>>>><

>>>>>>>>>>:

ð28Þ

where μ is the measure associated to each integration space, θF is the generic form for a fluid

temperature whatever the cavity, and θF/S stands for the fluid or solid temperature according

to the location in the domain.

Each equation in System (28) involves prescribed terms (known initial conditions θI,

boundary conditions θD or yR;@OR
) and cross-coupling terms between solid, fluid and radiative

temperatures, which are space-time functions. Formally this system of integral equations is a

Fredholm equation of the second kind for the vector~θ � ðyF; yS; yRÞ:

~θ ¼~f þ ~I ð~θÞ ð29Þ

where~f contains the prescribed terms and ~I is a linear integral vector operator acting on the

temperatures vector~θ.

By construction of the model in Eq (6) the integral operator ~I has contracting kernel,

which enables to apply the iterated kernel technique to establish solutions in the form of inte-

gral Neumann-series. Thanks to this property, solving Eq (29) fits into the standard of the MC

method [93–95]. With this approach, contributions of the terms in the infinite Neumann-

series expansion are statistically sampled, leading to the algorithmic construction of random

walks providing unbiased estimation of the solution. In this regard, solving Fredholm equation

of the second kind with MC can be considered as the functional extension of classical MC

methods for algebraic linear systems of any dimension [96–98]. From a practical point of view,

such methods estimate a probe quantity and in no way the whole field (in continuous cases) or

the ensemble of the unknown (in discrete cases). Typically, when solving algebraic linear sys-

tems with MC, one of the unknown is estimated without assessing the others, but the imple-

mented random walk statistically crosses the entire set of equations in order to ensure the

exactness of the result. In the present case, we will estimate the temperature at a given location

and time, without having to estimate the entire fields of temperature, thanks to the implemen-

tation of random walks switching from one submodel to the other.

5.1 Double randomization: A key point

As in MC methods solving Fredholm equations, we base our proposition on the estimation of

potentially infinitely nested expectations: for example, the random variable ΘS, whose expecta-

tion is the temperature in the solid, is a function of the temperatures yFi
in the fluid cavities,

which are themselves expectations of random variables YFi
. To understand the recursive

mechanics of probabilized coupling through nested expectations, it is interesting to isolate the

essential MC property that is classically named double randomization [83, 84]. This property is

trivial but leads to a subtle gesture that is very powerful because it enables to think the question

of the nesting (or the coupling in the present case) locally, i.e when the question is raised, at

one point of the random walk sampling.

PLOS ONE Coupling radiative, conductive and convective heat-transfers in a single Monte Carlo algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0283681 April 6, 2023 20 / 54

https://doi.org/10.1371/journal.pone.0283681


The following elementary illustration contains all the features of the double randomization:

We consider an observable θ1, written as the expectation of a random variable B, which is

itself defined as an algebraic linear operator L on the function θ2 of a random variable X.

y1 ¼ EðBÞ

B ¼ Lðy2ðXÞÞ

(

ð30Þ

In this case, the sampling algorithm for B is trivial:

Algorithm 5: b is a realization of B in the case where θ2 is an explicit and known function

(Eq (30))
Sample x according to the law of X;
b ¼ L y2ðxÞð Þ

Double randomization takes place as soon as the function θ2(x) itself is expressed as an

expectation of another random variable A(x) parametrized by x.

y2ðxÞ ¼ E½AðxÞ� ð31Þ

In a naive approach, one could think that it is required to evaluate the expectation of A(x)

for each realization x of X in order to be able to use the Algorithm 5 to sample B.

Yet, the law of iterated expectations enables to define a new random variable ~B such that

y1 ¼ E½~B�

~B ¼ LðAðXÞÞ

8
<

:
ð32Þ

which leads to the following algorithm to sample ~B:

Algorithm 6: ~b is a realization of ~B in the case where θ2 is defined from an expectation (Eq

(31))
Sample x according to the law of X;
Sample a according to the law of A(x);
~b ¼ L½a�

In practice, this double randomization operation is invoked whenever it is necessary to esti-

mate a quantity written in the form of an expectation at a step of random walk sampling. Dou-

ble randomization is essential in standard MC practice but often, it is not made explicit

because the processes which make the algorithmic proposal analogous to physics rely on an

intuitive vision that enables to circumvent formalization. For instance, in linear transport

physics, when intuitively sampling multiple scattering paths, at each scattering event, the path

continues in only one randomly sampled direction: this is the hallmark of double randomiza-

tion. If, by contrast, probabilization of Fredholm integral equations is the starting point, then

double randomization allows for an increased range of flexible application by simply avoiding

to address systematically the whole Neumann-series expansion.

This property vanishes as soon as the operators combining the expectations are no longer

linear [99–101]. However, recent works [102, 103] have shown that it is possible to extend the

proposition to nonlinear cases, by expanding the nonlinear functions as a Taylor-series and

then writing each monomial in the series as the product of independent and identically distrib-

uted random variables.

5.2 A recursive algorithmic approach: Towards a coupled path space

For each equation in System (28) taken independently, a probabilistic version was built by

defining random variables whose expectation are the temperatures of interest (Eqs (17), (21)
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and (26)). To find the solution of the coupled system with an iterative procedure, we now face

the fact that the different functions θ of the random variables are only known at the boundaries

of the overall problem (temporal and spatial); everywhere else they are themselves the expecta-

tion of new random variables. Double randomization is here used to address this question.

The strength of this approach is that double randomization can be used in a nested manner, as

many times as necessary, whenever the situation arises. Hence, random processes are going to

interlock recursively until an outcome is found, at a boundary or an initial condition.

The algorithmic translation of this proposition becomes trivial from the algorithms defined

for each uncoupled equation (Algorithms 2, 3, 4): the estimation of unknown θ functions (θS,

θR or θF) at a given location and/or time is simply replaced by a call to the corresponding sam-

pling procedure. Then, the iterative sequence switching from one process to another (based on

explicit probabilities) is ended as soon as an initial condition θI or a boundary condition θD or

yR;@OR
is met.

The result of the coupled procedure for a full realization is therefore to generate from the

probe at~x and at a given observation time, a sequence of points that move in space and back

in time toward the initial condition. This sequence of points creates a thermal path consist-

ing of a succession of sub-paths associated with each transfer mode. These sub-paths sam-

pled according to Algorithms 2, 3, 4 will be named convective path, conductive path and

radiative path respectively. At this stage a sub-path is defined only by its origin and its

endpoint.

If~x is within the solid, the first step in the MC algorithm consists in sampling a conductive

path. If~x is within the fluid, this first step is a convective path. There are also situations where

the first step is a radiative path, typically when producing an infrared image by simulating a

camera sensor. In all cases, at the end of this sub-path, either the temperature is known and

the algorithm stops, or the temperature is unknown and a new path is sampled:

• if the unknown temperature is a solid temperature, the new path is a conductive path within

the solid,

• if the unknown temperature is a fluid temperature, the new path is a convective path within

the fluid,

• if the unknown temperature is a radiative temperature, the new path is a radiative path that

may travel through both the solid and the fluid,

The process is continued until a sub-path ends at a location and time for which the temper-

ature is known. This succession of sampled conductive, convective or radiative paths will be

named a recursive path. An illustration of such a sequence is proposed in Fig 6.

In the proposition made here, we do not discuss the practicability of sampling the different

random variables. In particular cases where propagators (and therefore the probability density

functions) have an explicit and known form, building this sampling is undemanding. It leads

to an easy and very efficient numerical implementation providing an exact solution in the sta-

tistical meaning of the term (this is the case for the model in fluid cavities for example). How-

ever, in most situations involving complex geometries, the analytical expressions of the

propagators are inaccessible. This situation is often encountered in MC methods and indeed,

sampling paths does not always require the functional form of the propagators to be explicit.

The following section will focus on this question. The main difficulty will be related to the dif-

fusive component appearing in the energy conservation equation within the solid sub-domain

(Eq (6b)). To overcome this difficulty, we get into the theory of stochastic processes, in relation

with Feynman-Kac formulation.
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6 Feynman-Kac approach and the definition of continuous sub-

paths

The Green approach of the three previous sections is self-consistent in the definition of a cou-

pled heat transfer MC algorithm. The recursive nature of this algorithm is a way to address the

propagator of the overall system from a statistical reading of separate conduction, convection

and radiation propagators.

When describing this recursivity, we defined recursive paths made of random successions

of conductive paths, convective paths and radiative paths. At this stage, these paths are not yet

fully defined, since only the sub-path ending and succession probabilities pFi
I , pFi

R , pS
I , p

S
2
, pS

3
and

pR
A have been provided (Eqs (17), (21) and (25)). Hence, the Green formulations of Eqs (15),

(19) and (23) define propagators, from the sources (at the boundary and within the domain) to

the observation location, but with no time-resolved path-like interpretation.

In this section, the path definition is completed using a stochastic interpretation of the very

same physics. Three processes are introduced, ~X , ~R and ~U , together with four random vari-

ables, tX , tR, �X and �R. They can be used to write a set of three coupled Feynman-Kac formu-

lations of the solid, fluid and radiative temperatures in strict correspondence with Eq (6) and

the propagators are built from the statistics of these sub-paths.

~X is defined on a domain O that is either a solid or a fluid connex domain, O� OS or O�

OF. The notation ~X ~x ;t
p is for ~X at time p, conditioned to reach location~x at time t (i.e.

~X ~x ;t
t ¼~x). The associated random variable t

~x ;t
X is defined as the time at which ~X hits the para-

bolic boundary (O × {tI}) [ (@O × [tI, t]).

6.1 Conductive path

When located inside a solid domain, ~X is designed to allow a Feynman-Kac formulation of

the solution of Eq (6b) and defines a conductive path. Eq (6b) is a source-diffusion equation

Fig 6. Illustration of a realization of a recursive path starting from ð~x; tÞ in the framework of model (6).

Information first spreads by conduction in the solid domain, until it reaches the fluid domain. Once in the fluid, it

propagates by convection until it reaches the solid boundary at point ð~yF
S ; t

F
S Þ. Back in the solid, information continues

to spread by conduction until reaching a radiative source at ð~xS
R; tSÞ. Then it propagates by radiation until being

absorbed in the solid at point ð~xR
A; tSÞ, before finally reaching by conduction the point ð~xI ; tIÞ where temperature is

known. Through this example recursive path, the contribution to temperature yð~x; tÞ is the initial condition yIð~xIÞ.

https://doi.org/10.1371/journal.pone.0283681.g006
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with Robin boundary condition (the particular situation of a Dirichlet condition is, by con-

struction, included in this case), which leads to a Partially Reflected Brownian Motion

(PRBM) with ~X solution of the following Stochastic differential equation (Skorokhod stochas-

tic process, for further details see [104–106]):

d ~X p ¼ dWp þ nð ~X pÞH@OS
ð ~X pÞlp ð33Þ

where W is a three-dimensional Brownian motion, lp a local boundary time process, n a func-

tion onOS and H@OS
ð~xÞ ¼ 1 if~x 2 @OS.

6.2 Convective path

When located inside a fluid domain, ~X is designed to allow a Feynman-Kac formulation of

the solution of Eq (6c) and defines a convective path. Eq (6c) can be rewritten in probabilistic

form (Eqs (15), (17) and Appendix B) which leads to the definition of ~X as a white noise uni-

formly distributed on OF that hits the boundary with a constant rate m ¼ �hFS F (�hF is the aver-

age hF over the boundary @OF of areaS F) at locations ~YF
S �

~X tX
distributed according to

p~YF
S
ð~ySÞ ¼

hFð~ySÞ

m
ð34Þ

6.3 Radiative path

~R is defined on the whole system, i.e. the union of all solid and fluid connex domains, i.e.

OS [ OF1
[ OF2

[ OF3
. . . [ OF1 and ~U is defined on the unit sphere.

These two processes are designed to allow a Feynman-Kac formulation of the solution of

Eq (6d) and define a radiative path. Eq (6d) is a stationary linear Boltzmann equation, which

leads to a Stochastic Transport Process, i.e. the standard Markov process of linear transport

theory [107, 108]:

d~Rp ¼ c~U pdp ð35Þ

where c is the speed of light and ~U jumps according to the single scattering phase function at

instants given by a Poisson process of rate
R p

0
ks

~R~x ;t
v

� �
dv, that is, the duration between two

consecutive collisions is exponentially distributed.

6.4 Coupling

These three definitions lead to the following three coupled functional integrals, that are strictly

compatible with Eqs (6b), (6c) and (6d):

~x 2 OS; t 2 ½tI;þ1½ :

ySð~x; tÞ ¼ E

"

qSð
~X ~x ;t

t
~x ;t
X

; t
~x ;t
X Þexp

 

�

Z t

t
~x ;t
X

að ~X ~x ;t
p ; pÞdp

!

þ

Z t

t
~x ;t
X

að ~X ~x ;t
p ; pÞyRð

~X ~x ;t
p ; pÞexp

 

�

Z t

p
að ~X ~x ;t

v ; vÞdv

!

dp

#

ð36Þ
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~x 2 OF; t 2 ½tI;þ1½ :

yFð~x; tÞ ¼ E

"

qFð
~X ~x ;t

t
~x ;t
X

; t
~x ;t
X Þexp

 

�

Z t

t
~x ;t
X

að ~X ~x ;t
p ; pÞdp

!

þ

Z t

t
~x ;t
X

að ~X ~x ;t
p ; pÞyRð

~X ~x ;t
p ; pÞexp

 

�

Z t

p
að ~X ~x ;t

v ; vÞdv

!

dp

#

ð37Þ

t 2 ½tI;þ1½ :

yRð~x; tÞ ¼ E

"

~yRð
~R~x ;t

t
~x ;t
R

; ~U ~x ;t
t
~x ;t
R

; t
~x ;t
R Þexp

 

�
R t
t
~x ;t
R
bð~R~x ;t

p ; pÞdp

!

þ

Z t

t
~x ;t
R

bð~R~x ;t
p ; pÞyF=Sð

~R~x ;t
p ; pÞexp

 

�

Z t

p
bð~R~x ;t

v ; vÞdv

!

dp

#

ð38Þ

with

qSð~x; tÞ �

yIð~xÞ if t ¼ tI; ~x 2 OS

yFð~x; tÞ if t > tI; ~x 2 @O
D
F

yDð~x; tÞ if t > tI; ~x 2 @OD

8
>>><

>>>:

ð39Þ

qFð~x; tÞ �
yIð~xÞ if t ¼ tI; ~x 2 OF

ySð~x; tÞ if t > tI; ~x 2 @OF

(

ð40Þ

a ¼
z

rC
ð41Þ

b ¼ kac ð42Þ

where ~yR � yR;@OR;~u
is the directional radiative temperature in incoming directions at the limit

of the composite domain, and θF/S is either the temperature of the fluid θF or the temperature

of the solid θS, depending on the position.

These sub-path statistics then achieve the objective of completing the spatio-temporal

description of section 4 on decoupled models for each of the three heat transfer modes

separately.

6.5 Switching from one mode to the other

Of course, Eqs (36), (37) and (38) are coupled: θR appears as an integrated source in Eqs (36)

and (37) and θ as an integrated source in Eq (38). To recover the recursive path description of

Section 5, this coupling must be translated into thermal paths switching from one mode to the

other (whether in the domain or at an interface). Following a very standard MC approach, this

is achieved by defining random variables �X and �R that turn the source integrations into

expectations. When conditionned by~x and t, �~x ;tX is defined on ½t
~x ;t
X ; t� with a probability
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density

p
�
~x ;t
X
ð�Þ ¼ exp

�

�

Z t

t
~x ;t
X

að ~X ~x ;t
p ; pÞdp

�

dð� � t
~x ;t
X Þ þ að

~X ~x ;t
�
; �Þexp

�

�

Z t

�

að ~X ~x ;t
p ; pÞdp

�

ð43Þ

Similarly, �
~x ;t
R is defined on ½t

~x ;t
R ; t� with

p
�
~x ;t
R
ð�Þ ¼ exp

�

�

Z t

t
~x ;t
R

bð~R~x ;t
p ; pÞdp

�

dð� � t
~x ;t
R Þ þ bð

~R~x ;t
�
; �Þexp

�

�

Z t

�

bð~R~x ;t
p ; pÞdp

�

ð44Þ

Reporting these definitions into Eqs (36), (37) and (38) leads to

~x 2 OS; t 2 ½tI;þ1½ : ySð~x; tÞ ¼ E rSð
~X ~x ;t

�
~x ;t
X

; �
~x ;t
X Þ

� �

ð45Þ

~x 2 OF; t 2 ½tI;þ1½ : yFð~x; tÞ ¼ E rFð ~X
~x ;t
�
~x ;t
X

; �
~x ;t
X Þ

� �

ð46Þ

t 2 ½tI;þ1½ : yRð~x; tÞ ¼ E rRð
~R~x ;t

�
~x ;t
R

; ~O
~x ;t
�
~x ;t
R

; tÞ
� �

ð47Þ

with

rSð~x; tÞ �

yIð~xÞ if t ¼ tI; ~x 2 OS

yFð~x; tÞ if t > tI; ~x 2 @O
D
F

yDð~x; tÞ if t > tI; ~x 2 @OD

yRð~x; tÞ if t > tI; ~x 2 OS

8
>>>>>>><

>>>>>>>:

ð48Þ

rFð~x; tÞ �

yIð~xÞ if t ¼ tI; ~x 2 OF

ySð~x; tÞ if t > tI; ~x 2 @OF

yRð~x; tÞ if t > tI; ~x 2 OF

8
>>><

>>>:

ð49Þ

rRð~x; ~o; tÞ �

~yRð~x; ~o; tÞ if ~x 2 @OR

ySð~x; tÞ if ~x 2 OS

yFð~x; tÞ if ~x 2 OF

8
>>><

>>>:

ð50Þ

Eqs (45) to (50) allow to find the same recursive structure as the one described in Section 5:

• In Eq (45) the solid temperature is defined as an expectation that involves the fluid tempera-

ture at the boundary, via θF in Eq (48).

• In Eq (46) the fluid temperature is defined as an expectation that involves the solid tempera-

ture at the boundary, via θS in Eq (49).

• Both equations involve the radiative temperature of Eq (47), itself an expectation that

involves both the solid and fluid temperatures, via θS or θF in Eq (50).
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Now, the recursivity is expressed in terms of processes, such that the physical picture of ran-

domly alternating conductive, convective and radiative paths is justified.

Through coupled stochastic processes, we have then developed a probabilized path space

that makes the propagation viewpoint of the previous section operational. Scanning these

paths according to the laws of the corresponding stochastic processes leads to strict sampling

of the random variables defined by the Eqs (17), (21) and (25). Fig 7 illustrates both visions for

the realization of a path. A MC algorithm of the coupled problem can then be designed based

on the recursive sampling of the sub-paths defined by stochastic processes. Algorithm 7 gives

the corresponding algorithmic prototype.

6.6 Sampling paths

In Algorithm 7, the “Sample a convective path starting at ð~x; tÞ” part does not raise any specific

issue, and has been described in the Algorithm 2.

We can simply mention that theYFI
random variable can be sampled using the null-colli-

sion technique [109–111] as soon as the convective exchange coefficient hF is spatially hetero-

geneous. The “Sample a radiative path γ starting at location~xR at time tR” part consists in the

realization of a stationary radiative path, as described in the previous section by “the standard

Markov process of linear transport theory”. The realization of such a path in the presence of an

absorbing, emitting and scattering medium has been widely described in the literature (see for

instance [3, 4, 112]). Numerous radiative transfer simulation codes have implemented this

path sampling technique, and various nuances and subtleties are presented in reference books

[113–116].

As mentioned above, the main remaining issue for an efficient algorithmic implementation

in a confined environment is to generate Brownian trajectories coupled to a radiative source

field in a solid medium. We present our choice of implementation in the next section.

Algorithm 7: The complete recursive algorithm evaluating temperature at location~x∗ and

time t* with a full conduction/convection/radiation coupling.~x∗ and t*may be within the

solid or within the fluid. N recursive paths are sampled, starting at~x∗, backward in time from

t*. The estimator is m and s is its statistical uncertainty. The points where coupling operates

are stressed by the keyword coupling.
sum = 0;
sumOfSquares = 0;
foreach recursive path i in 1:N do
Set ~x ¼~x∗ and t = t*;
Set recursion to true;
while recursion do
case (~x is within the solid) do
Sample a conductive path starting at ð~x; tÞ (see 6.1 and 7);

case (~x is within the fluid) do
Sample a convective path starting at ð~x; tÞ (see 6.2 and algo 2);

case (the path ends at an intial condition) do
Get the location ~xI of the end of the path;
w ¼ yIð~xIÞ;
Set recursion to false;

case (the path ends at a radiative source) do
Get the location ~xR and time tR of the end of the path (coupling);
Sample a radiative path γ starting at location ~xR at time tR (see

6.3);
Get the location ~xγ and the direction ~ωγ of the end of the radia-

tive path;
if (~xγ is at a radiative limit) then
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Fig 7. (a) matches Fig 6 for which only the points corresponding to the end of sub-paths (coupled propagators) are

defined. (b) illustrates the whole path for each transfer mode, starting from the observation point ð~x; tÞ until finding a

prescribed temperature (here a temperature at the initial condition at~xIÞ. Brownian paths are black lines, radiative

paths red lines and convective paths by blue dotted lines. The illustrated sequence is: conduction! convection!

conduction! radiation! conduction. While only the beginning and the end of each sub-path is shown in (a), a

detailled example of the sub-path for each transfer mode is displayed in (b). The standard illustration (see [117]) of the

multi-scattering radiative path results from the iterative sampling of scattering free path lengths and propagation

directions. (a) Green functions method and (b) Stochastic process method.

https://doi.org/10.1371/journal.pone.0283681.g007
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w ¼ ~yð~xγ; ~ωγ; tRÞ;
Set recursion to false;

else
Set ~x ¼~xγ and t = tR (coupling);

case (the path ends at a boundary) do
Get the location ~xC and time tC of the end of the path;
if (the solid or fluid temperature θ is known at the end of the

path)
then

w ¼ yð~xC; tCÞ;
Set recursion to false;

else
(see 5.2)
case (the path is a conductive path) do
Set ~xC as belonging to the fluid;

case (the path is a convective path) do
Set ~xC as belonging to the solid;

Set ~x ¼~xC and t = tC (coupling);
sum = sum + w;
sumOfSquares = sumOfSquares + w2;

m ¼ sum
N ;

s ¼ 1ffiffiffi
N
p

sumOfSquares
N � m2

� �
;

7 The practice of sampling Brownian motion with confinement and

radiation coupling

The issue of sampling Brownian motion in confined environments with heterogeneous

sources is well documented in the literature and is the subject of active research (the Appendix

E gives an overview of the most popular approaches to confined Brownian motion). Here we

make an alternative choice which is not directly derived from the most standard first passage

approaches. It is motivated by the desire to stay as close as possible to path-sampling proce-

dures that are compatible with the efficient ray-tracing techniques developed by the computer

graphics community. Our proposal, denoted δ-sphere random walk for conductive paths, can

be summarized as follows:

1. The diffusion equation is transformed by approximating the Laplacian term by its finite dif-

ference version while remaining entirely continuous.

2. Near the boundaries the random walk is adjusted to guarantee a certain level of accuracy,

the scheme being exact for linear temperature profiles at steady state.

3. The continuity of the heat flux that ensures the coupling condition at the interfaces is

treated with the same level of approximation as the steps described above.

The advantage of reformulating the model with this set of approximations is that once the

probabilization is done, it can be solved exactly in the strict MC sense. It allows to separate the

approximations of very different nature: on the one hand, the part associated with the rewrit-

ing of the model and, on the other hand, the statistical uncertainty of the unbiased estimator of

the corresponding expectation. The result in terms of ray tracing and trajectories is illustrated

in Fig 8. Let us note in particular two rays of opposite directions at each step of the conductive

random walk, jumps of variable size near the boundaries and standard multiple scattering tra-

jectories for the radiative part. We develop in this paragraph the theoretical considerations

that lead to this particular scheme. In order to justify the complete random walk scheme in a

didactic way, we will separate the steps as follows:
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• Approximations of conducto-radiative coupled system in an infinite medium.

• Modifications to the scheme to account for confinement (essentially with consequences near

the boundaries).

• Additional steps related to boundary coupling conditions

7.1 The approximation of the coupled conducto-radiative system in an

infinite medium

We start with the model 6b rewritten in an infinite geometric space of dimension n, with con-

stant thermophysical properties:

rC@ tyS ¼ lDyS þ zðyR � ySÞ ; ðt;~xÞ 2�tI;þ1½�R
n

ySð~x; tIÞ ¼ yIð~x; tIÞ ;~x 2 Rn

(

ð51Þ

From previous sections, θR (required for the radiative coupling) can be expressed from a

process that completely defines a path space over which it is possible to formally write the tem-

perature as an expectation:

yRð~x; tÞ ¼
Z

DG

pGðgÞdgySð~xγ; tÞ ; ðt;~xÞ 2�tI;þ1½�R
n

ð52Þ

in whichDG � DGð~xÞ represents the radiative path space of origin~x over which the path ran-

dom variable G � Gð~xÞ of density pΓ is defined. It is worth noting that the temperature

retained at the end of the γ path,~xγ , is taken with no modification of date t, which means that

radiative processes are considered at a stationary state, because they are very fast compared to

Fig 8. Illustration of thermal path sampling in a confined environment with a δ-sphere random walk for

conductive paths. The bidirectional arrows represent the fact that an intersection test must be performed in two

opposite directions at each jump, in order to obtain the local δ step value. In red: the walking step is smaller than in the

rest of the field, and the walk ends exactly at the boundary. At position~x2 the conductive path switches to a radiative

path until position~x3.

https://doi.org/10.1371/journal.pone.0283681.g008
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the other processes involved. Sampling this path space is straightforward using MC methods:

sampling of the Γ random variable is easy no matter the complexity of the underlying radiative

physics (for instance, taking into account multiple scattering or multiple reflections in all

kinds of situations).

The only required approximation in Eq (51) consists in replacing the Laplacian operator by

its centered finite differences counterpart. In order to obtain an expression that does not

depend on a given cartesian basis, the finite difference is averaged over all possible basis orien-

tations. The retained approximate model is finally:

rC@t
~yS ¼ l

2n
R

Sn� 1

1

S n� 1

d~u~yS;~u � 2n~yS

d
2

0

B
B
@

1

C
C
Aþ zð

~yR �
~ySÞ ; ðt;~xÞ 2�tI;þ1½�R

n

~ySð~x; tIÞ ¼ yIð~xÞ ;~x 2 Rn

~yRð~x; tÞ ¼
Z

DG

pGðgÞdg~ySð~xg; tÞ ; ðt;~xÞ 2�tI;þ1½�R
n

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð53Þ

whereS n� 1 is the surface of sphere Sn� 1
in dimension n and ~yS;~u �

~yS;~uð~x; tÞ ¼ ~ySð~x þ d~u; tÞ.

It was chosen to use the ~yS notation for the temperature that is a solution of Eq (53) to specifi-

cally mention its dependence to the δ parameter.

In Appendix F, the model 53 is analytically studied in an infinite medium. Its consistency

with the exact model of Eqs (51) and (52) is discussed, as well as the convergence of the solu-

tion ~yS towards θS.

7.2 Walk on δ-sphere without radiative coupling

In order to understand the approximation proposition, this paragraph first describes the ran-

dom walk in pure diffusion (i.e. on the only mechanism that is approximated in the field, the

radiation being treated in an exact manner). The first equation of (53) without the radiative

term (which is the case when z = 0) can easily be reformulated as a second kind Fredholm inte-

gral:

~ySð~x; tÞ ¼
Z þ1

0

pTðtÞdt

Hðt � tÞyIð~xÞ

þ Hðt � tÞ
Z

Sn� 1

p~U ð~uÞd~u~ySð~x þ d~u; t � tÞ

8
><

>:

9
>=

>;
ð54Þ

That can be re-written as an expectation:

~ySð~x; tÞ ¼ E½HðT � tÞyIð~xÞ þHðt � TÞE½~ySð~x þ d~U ; t � TÞ�� ð55Þ

where pT is the density probability of T that follows an exponential law of parameter 2nD/δ2,

where D ¼ l

rC is the thermal diffusivity of the material and p~U is the density probability of the

~U random variable (uniform over the sphere of dimension n − 1). Notation HðxÞ stands for

the Heaviside function, that takes a value of 1 for x> 0 and a value of 0 for x< 0.

Temperature ~yS at position~x and at time t is expressed as the expected value of a linear

function of an expectation; the double randomization principle can then be invoked in order
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to express the temperature as a unique expectation.

~ySð~x; tÞ ¼ E½yIð
~XNÞ� ð56Þ

with:

• ~XN ¼~x þ d
PN

i¼0
~Ui,

~U 0 �
~0, T0 = 0,

• N ¼ min n 2 N;
Pn

i¼0
Ti > t � tI

� �

• (Ti)i2{0,. . .,N} and ð~UiÞi2f0;...;Ng two series of independent and identically distributed random

variables (IID) respectively for T and ~U .

It should be noted that ~XN can be read as a process that replaces the Brownian process W
that was defined in the previous section. Eq (56) is a Feynman-Kac equation in the study case.

Algorithm 8 gives the simple way in which the sampling of yIð
~XNÞ is done for given~x and t.

Algorithm 8: δ-sphere algorithm in infinite medium without coupling. w is the generic

notation for a realization of the sampled random variable
while t > tI do
Sample τ according to the law of T;
t = t − τ;
if t < tI then

w ¼ yIð~xÞ;
else
Sample ~u according to the law of ~U;
~x ¼~x þ d~u;

7.3 Walk on δ-sphere with radiative coupling

Eq (53) is now considered with its radiative coupling term. From a formal point of view, there

is no additional difficulty to obtain a version of this equation as a second kind Fredholm equa-

tion:

~ySð~x; tÞ ¼
Z þ1

0

pTðtÞdt

Hðt > t � tIÞyIð~xÞ

þ Hðt < t � tIÞ pC

Z

Sn� 1

p~U ð~uÞd~u~ySð~x þ d~u; t � tÞ þ pR

R

DG
pGðgÞdg~ySð~xg; t � tÞ

� �

8
><

>:

9
>=

>;
ð57Þ

That can be re-written as an expectation:

~ySð~x; tÞ ¼ E
HðT � tÞyIð~xÞ

þ Hðt � TÞðBðpCÞE½~ySð~x þ d~U ; t � TÞ� þ ð1 � BðpCÞÞE½~ySð~xG; t � TÞ�Þ

" #

ð58Þ

where pT is the density probability of T that follows an exponential law of parameter (2nλ +

zδ2)/(ρCδ2); pC = (2nλ)/(2nλ + zδ2), pR = 1 − pC and p~U is the probability density of the ~U ran-

dom variable (uniform over the sphere of dimension n − 1). ℬðpCÞ is a Bernouilli random vari-

able of parameter pC.

Similarly to the no-radiation case, the double randomization principle is used in order to

evaluate this expectation by MC. It consists in writing:

~ySð~x; tÞ ¼ E½yIð
~YNÞ� ð59Þ

The random variable ~YN is not formally defined here; the Algorithm 9 for the sampling of

yIð
~YNÞ for given~x and t is sufficient to clarify its meaning.
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Algorithm 9: δ-sphere algorithm in infinite medium with radiative coupling. w is the

generic notation for a realization of the sampled random variable.
while t > tI do
Sample τ according to the law of T;
t = t − τ;
if t < tI then

w ¼ yIð~xÞ;
else
Sample r uniformly on [0, 1];
if r < pC then
Sample ~u according to the law of ~U;
~x ¼~x þ d~u;

else
Sample γ according to the law of Gð~xÞ;
~x ¼~xγ;

Property of our δ-sphere scheme. At steady state without radiative coupling, Eq 54

becomes ~ySð~x; tÞ ¼
R

Sn� 1p~U ð~uÞd~u ~ySð~x þ d~uÞ which is exact since θS is an harmonic function

solution of ΔθS = 0 (take z = 0 and @tθS = 0 in Eq 51). The error committed in general cases, as

a function of the δ value, is provided in Appendix F.

7.4 The approximation of conductive path near the boundary

The δ-sphere random walk has been detailed in an infinite medium. Coupling with radiative

transfer does not require any approximation, nor does it introduce any additional difficulty.

Remains the question of approximating the Brownian walk in a confined medium, more pre-

cisely, how the diffusive random walks deal with boundaries. As in any “Walk on Sphere”

method [28, 31, 118, 119], the δ-sphere walk never really ends at a boundary. With a small

enough value of δ, it could be considered that, when the random walk crosses the boundary,

the intersection position is the final position of the path. An alternative to this trivial solution

is proposed here, that reduces the numerical error for a given value of the walking step.

We keep the constraint of using only random walks built upon ray-surface intersections,

since our δ-sphere random walk aims at using computer sciences methods for identifying the

intersection between a ray and a scene defined by a huge number of geometrical primitives.

To deal with the boundary, we propose a scheme that is exact in the case of linear tempera-

ture profiles at stationnary state.

To that purpose, the value of the walking step is adjusted along direction~u:

d � dð~x;~uÞ ¼ minfdref ; d@OS
ð~x;~uÞg

where δref represents the maximum step of the random walk, and d@OS
ð~x;~uÞ is the distance to

the closest boundary in directions~u or � ~u. Indeed, any linear function yð~xÞ ¼~a:~x þ b satis-

fies

yð~xÞ ¼
yð~x þ d~uÞ þ yð~x � d~uÞ

2
ð60Þ

In the case when the temperature profile is not globally linear, a value of the δ parameter

that locally ensures a linear profile can be found in almost all cases; this makes the δ-sphere

random walk a good approximation, including during non-stationary phases.

From an algorithmic point of view, the proposition is rather straightforward. After sam-

pling a direction~u and before enacting the displacement, the value of the random walk step

has to be evaluated by testing the distance to the boundary in both directions~u and � ~u. The
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random walk will therefore always use a value δref for positions far from the boundary; and for

positions that are close to the boundary, the value of the walking step will be automatically

reduced (see Fig 8). In the spatial sub-domains where δ is lower than δref, the random walk will

therefore statistically stop at the boundary half the time. If the temperature of the boundary is

known (Dirichlet limit condition), the random walk ends at the boundary. Otherwise (Robin

limit condition), a specific treatment must be performed, that is described in the following

paragraph.

It should be emphasized that Eq (55) is still perfectly valid, even in the presence of bound-

aries. The main difference in this case is that, in a confined medium, the δ parameter and the

random variable T both depend of the random variable ~U . This will translate in terms of algo-

rithm by the fact that the first sampling must be performed for random variable ~U . The algo-

rithm for sampling random variables for~x and t is described in Algorithm 10.

Algorithm 10: δ-sphere algorithm in bounded domain without radiative coupling. w is the

generic notation for a realization of the sampled random variable.
while t > tI or ~x=2@OS do
Sample ~u accordind to the law of ~U;
Compute the distances d± to the boundary in the �~u directions;
δ = min(δref, d±);
Sample τ according to the law of T � Eð2nD

d2 Þ;
t = t − τ;
if t < tI then

w ¼ yIð~xÞ;
else
~x ¼~x þ d~u;
if ~x 2 @OS then

w ¼ y@OS
ð~x; tÞ;

7.5 Interface conditions and flux continuity

The temperature at the boundary is generally unknown, except in the particular case of a

Dirichlet condition (set temperature). When the temperature is unknown, a discretized ver-

sion of the flux continuity relation for the interface between two media is used, in order to

express the boundary temperature as an expectation. The double randomization technique

then makes it possible to continue generating the recursive thermal path, as previously shown.

The continuity of the surface flux density over an interface with a Robin condition is writ-

ten as in Eq (6b):

l~n:~ryS ¼ � l
@yS

@n
¼ hF yF � ySð Þ ; ðt;~xÞ 2�tI;þ1½�@O

D
S ð61Þ

where~n is the incoming normal at the surface of the solid and θF is the temperature of the

fluid.

As for the field approximation, the normal derivative at the boundary is translated into its

finite difference counterpart:

l
~ySð~x; tÞ � ~ySð~x þ db

~N ; tÞ
db

¼ hF yFðtÞ � ~ySð~x; tÞ
� �

; ðt;~xÞ 2�tI;þ1½�@O
D
S ð62Þ

From which the boundary temperature is obtained:

~ySð~x; tÞ ¼ pdb
~ySð~x þ db~n; tÞ þ pFyFðtÞ ; ðt;~xÞ 2�tI;þ1½�@O

D
S ð63Þ

with pdb ¼
l
db

l
db
þhF

and pF ¼
hF

l
db
þhF

.
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δb is a numerical parameter just like δ. In some cases it may be useful to be able to impose

δb and δ separately but in many applications δb = δ is a relevant choice.

Expression 63 is interpreted as the expectation of a random variable ~Y intð~x; tÞ:

~ySð~x; tÞ ¼ E½ ~Y intð~x; tÞ�

with:

~Y intð~x; tÞ ¼ BðpdbÞ
~ySð~x þ db~n; tÞ þ ð1 � BðpdbÞÞyFðtÞ

It was previously shown that the temperature at any position in the solid and the temperature

of the fluid can be interpreted as the expectation of well defined random variables. The double

randomization technique is then used once again in order to deal with nested expectations; by

doing so, the thermal path continues either in the fluid or in the solid, at a distance δb from the

boundary.

7.6 The path space with random walk on δ-sphere

All items are now available in order to completely define the thermal path space. The Brown-

ian process in the field and the connecting condition between the solid and fluid are the only

mechanisms that are approximated. Other processes, as well as all couplings in the field, are

treated in an exact manner.

Fig 9 completes Fig 7 by adding a representation of the conductive paths under the approxi-

mation of δ-sphere random walk.

8 Conclusions and outlooks

The proposal of the present text combines several points of view over MC methods with one

leading intention: benefiting from the solid foundations laid in a vast literature. As far as prop-

agation, stochastic processes and integral relations are concerned, the formal background is

well established and the corresponding probabilistic description provides a common language

that supports simple algorithmic proposals. The presentation was focused on coupled thermal

transfers for their very wide application significance, but the illustrated framework is nonethe-

less much wider than this particular disciplinary field and other linear coupled physics can be

studied similarly (see for instance [120–122]). Of course, many questions about coupled path

spaces are still widely open, which were left out from the present article. Several of these ques-

tions are getting addressed in ongoing works that already started to provide insightful perspec-

tives, as for instance:

• computing spatial gradients or parametric and geometric sensitivities; solutions are starting

to emerge from a better understanding of the information carried by thermal paths that is

available for further quantitative analysis [11, 123–126];

• the question of non-linearly coupled physics; several theoretical advances in the domain may

lead to practical solutions for probe computations, which preserve the essential properties of

the present methodology [103, 122, 127–129].

• in a very general way, revisiting physical intuitions using path integrals that include coupling

has consequences in terms of analysis because of the possibility to read the structure of the

coupling inside a single trajectory space.
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Fig 9. Fig 7 is completed by the representation of a diffusive random walk under the approximation of a δ-sphere

random walk. (a) Green functions method, (b) Stochastic process method, and (c) Stochastic process method.

https://doi.org/10.1371/journal.pone.0283681.g009
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APPENDIX

A Radiation linearized in temperature

We start from the stationary radiative transfer equation formulated in terms of monochro-

matic specific intensity In � Inð~x;~u; tÞ at position~x, in direction~u at time t and frequency ν:

~u:~rIn ¼ � knaIn þ knaI
eq
n
� kns In þ kns

Z

4p

pnsð~uj~u
0ÞI0

n
d~u 0 ð64Þ

where kna is the absorption coefficient, kns the scattering coefficient, pns the scattering phase func-

tion, I0
n
� Inð~x;~u 0; tÞ and Ieq

n
� Ieq

n
ðyð~x; tÞÞ the specific equilibrium intensity at temperature

yð~x; tÞ of the solid or fluid. Although the radiative transfer is stationary, Iν depends on t due to

the evolution of the solid/fluid temperature.

Assuming that at all times and positions, the solid/fluid temperature remains close to a ref-

erence temperature θref, the temperature dependence of the specific equilibrium intensity can

be linearized:

Ieq
n
ðyÞ � Ieq

n
ðyrefÞ þ @yIeq

n
ðyrefÞðy � yrefÞ ð65Þ

Equilibrium properties allow to write:

0 ¼ � knaI
eq
n
þ knaI

eq
n
� kns I

eq
n
þ kns

Z

4p

pnsð~uj~u
0ÞIeq

n
d~u 0 ð66Þ

Introducing the notation ~I n ¼ In � Ieq
n
ðyrefÞ for the perturbations and subtracting Eqs (64)

and (66), the radiative transfer equation under the assumption (65) can be written as follows:

~u:~r~I n � � kna~I n þ kna@yI
eq
n
ðyref Þðy � yref Þ � kns~I n þ kns

Z

4p

pnsð~uj~u
0Þ~I 0

n
d~u 0 ð67Þ

We choose to rewrite this equation using the radiance temperature y
n

R;~u in the direction~u.

This radiance temperature is a spectral and directional quantity defined as the temperature for

which the equilibrium specific intensity is equal to the specific intensity:

Ieq
n
ðy

n

R;~uð~x; tÞÞ ¼ Inð~x;~u; tÞ ð68Þ

Using Eq (65),

In � Ieq
n
ðyrefÞ þ @yIeq

n
ðyrefÞðy

n

R;~u � yrefÞ ð69Þ

and therefore,

~I n � @yIeq
n
ðyrefÞðy

n

R;~u � yrefÞ ð70Þ

Eq (67) becomes:

~u:~rynR;~u � � knay
n

R;~u þ knay � knsy
n

R;~u þ kns

Z

4p

pnsð~uj~u
0Þy

n

R;~u 0d~u
0 ð71Þ

In the energy conservation equation, the radiation balance term ψR is defined as the differ-

ence between the absorbed and emitted power densities, ψR = ψabsorbed − ψemitted with

cabsorbed ¼

Z

4p

d~u
Z þ1

0

dn knaIn ð72Þ

PLOS ONE Coupling radiative, conductive and convective heat-transfers in a single Monte Carlo algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0283681 April 6, 2023 37 / 54

https://doi.org/10.1371/journal.pone.0283681


and

cemitted ¼

Z

4p

d~u
Z þ1

0

dn knaI
eq
n

ð73Þ

Using the Stefan-Boltzmann law,

Z þ1

0

Ieq
n
ðyrefÞdn ¼

sy
4

ref

p

and the previous assumptions, we can write:

cR ¼

Z

4p

d~u
Z þ1

0

dnkna@yI
eq
n
ðyrefÞðy

n

R;~u � yÞ

¼

Z

4p

d~u
Z þ1

0

dnkna@yI
eq
n
ðyrefÞy

n

R;~u �

�Z

4p

d~u
Z þ1

0

dnkna@yI
eq
n
ðyrefÞ

�

y

¼ 16kasy
3

ref

Z

4p

1

4p
d~u
Z þ1

0

dnpNðnÞy
n

R;~u

� �

� y

� �

ð74Þ

with

pNðnÞ ¼
kna
ka

pkðnÞ ð75Þ

where

pkðnÞ ¼
p@yIeq

n
ðyrefÞ

4sy
3

ref

ð76Þ

and

ka ¼

Z þ1

0

pkðnÞdn kna ð77Þ

We finally retain:

cR ¼ zðyR � yÞ

yR ¼

Z

4p

1

4p
d~u
Z þ1

0

dnpNðnÞy
n

R;~u

8
><

>:
ð78Þ

with z ¼ 16kasy
3

ref
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B Definitions for YFi
ðtÞ

Eq (5), which is a first order time equation for the fluid temperature variable, fits perfectly into

the illustrative case described in Fig 2 and can be reformulated as:

dyFi

dt
ðtÞ ¼ � aFi

yFi
ðtÞ � y∗Fi

ðtÞ
� �

aFi
¼
ziV Fi

þ
R

@OFi
hFð~ySÞd~yS

riCiV Fi

y
∗
Fi
ðtÞ ¼

zi
R

OFi
yRð~xR; tÞd~xR þ

R

@OFi
hFð~ySÞySð~yS; tÞd~yS

ziV Fi
þ
R

@OFi
hFð~ySÞd~yS

yFi
ðtIÞ ¼ yI

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð79Þ

The development then leads to the same probabilistic formulation as in Fig 2, with ~YFi
the

random variable whose expectation is yFi
:

~YFi
ðtÞ ¼ BðpFi

I ÞyI þ

�

1 � BðpFi
I Þ

�

y
∗
Fi
ðTFiÞ ð80Þ

yFi
ðtÞ ¼ E ~YFi

ðtÞ
h i

ð81Þ

where:

• pFi
I ¼ exp � aFi

ðt � tIÞ
� �

; with tI the initial time.

• ℬðpÞ is a Bernoulli r.v. with parameter p

• TFi is a r.v with an exponential distribution of parameter aFi

Meanwhile, expressions provided by 80 and 81 are not fully satisfactory because the source

term y
∗
Fi
ðtÞ involves integrals of both temperatures θR and θS. It is thus necessary to carry out

the probabilization of y
∗
Fi
ðtÞ by writing the temperature of the fluid as the expectation of a ran-

dom variable which takes either the value of θR or that of θS (or θI).

Such an expression will be compatible with the final objective, which remains the coupling

between submodels. Indeed, the temperatures θR and θS, which are prescribed here, will be the

coupling variables when solving the whole model in Eq (6).

Let us define the area SFi
of the domain @OFi

and �hFi
¼
R

@OFi
hFð~ySÞd~yS=SFi

the convection

coefficient hF averaged over the boundary. Hence:

y
∗
Fi
ðtÞ ¼

ziVFi

ziVFi
þ �hFi

SFi

Z

OFi

1

VFi

yRð~xR; tÞd~xR þ
�hFi

SFi

ziVFi
þ �hFi

SFi

Z

@OFi

hFð~ySÞ

�hFi
SFi

ySð~yS; tÞd~yS

PLOS ONE Coupling radiative, conductive and convective heat-transfers in a single Monte Carlo algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0283681 April 6, 2023 39 / 54

https://doi.org/10.1371/journal.pone.0283681


Which finally leads to the expression of the fluid temperature (Eq (15)):

yFi
ðtÞ ¼ gFi;I

ðtjtIÞyI

þ

Z t

tI

Z

@OFi

gFi;S
ðtj~yS; tÞySð~yS; tÞd~ySdt

þ

Z t

tI

Z

OFi

gFi ;R
ðtj~xR; tÞyRð~xR; tÞd~xRdt

where

• gFi;I
ðtjtIÞ ¼ pFi

I

• gFi;S
ðtj~yS; tÞ ¼ ð1 � pFi

R Þ
hð~ySÞ
�hSFi

aFi
exp � aFi

ðt � tÞ
� �

• gFi;R
ðtj~xR; tÞ ¼ pFi

R
1

VFi
aFi

exp � aFi
ðt � tÞ

� �

with pFi
R ¼

ziVFi
ziVFiþ

�hFi SFi
.

Defining the two independent variables

• ~YFi
S a random position variable following the distribution

hFð~ySÞ
�hFiS Fi

on the surface @OFi

• ~XFi
R a random position variable following the uniform distribution 1

VFi
on OFi

we can write Eqs (16) and (17) which define the temperature of the fluid as an expectation:

yFi
ðtÞ ¼ E½YFi

ðtÞ�

with

YFi
ðtÞ ¼ B1ðp

Fi
I ÞyI

þ

�

1 � B1ðp
Fi
I Þ

�

B2ðp
Fi
R ÞyRð

~XFi
R ;TFiÞ þ

�

1 � B2ðp
Fi
R Þ

�

ySð
~YFi

S ;TFiÞ

� �

When dealing with coupling, we will then work, for each fluid subvolume OFi
, with the ran-

dom variables YFi
ðtÞ rather than ~YFi

ðtÞ.

C Definitions for YSð~x; tÞ
This appendix aims at providing the definitions of the random variables and probabilities that

appear in expression 21, reported here for the sake of clarity:

YSð~x; tÞ ¼ B1ðpS
I ÞyIð

~XS
I Þ þ ð1 � B1ðpS

I ÞÞB2ðpS
2
ÞyRð

~XS
R;T

S
RÞ

þð1 � B1ðpS
I Þð1 � B2ðpS

2
ÞÞB3ðpS

3
ÞyFð

~YS
F;T

S
FÞ

þð1 � B1ðpS
I Þð1 � B2ðpS

2
ÞÞð1 � B3ðpS

3
ÞÞyDð

~YS
D;T

S
DÞ
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• Definition of the probabilities:

pS
I ð~x; tjtIÞ ¼

Z

OS

gS;Ið~x; tj~xI; tIÞd~xI

pS
Rð~x; tjtIÞ ¼

Z t

tI

Z

OS

gS;Rð~x; tj~xR; tRÞd~xRdtR

pS
@OD

S
ð~x; tjtIÞ ¼

Z t

tI

Z

@OD
S

gS;@OD
S
ð~x; tj~yF; tFÞd~yFdtF

pS
@OD
ð~x; tjtIÞ ¼

Z t

tI

Z

@OD

gS;@OD
ð~x; tj~yD; tDÞd~yDdtD

with the relation (under the restriction conditions defined in Eq (8))

pS
I þ pS

R þ pS
@OD

S
þ pS

@OD
¼ 1

so that the following quantities can be considered as probabilities:

pS
2
¼

pS
R

1 � pS
I

and pS
3
¼

pS
@OD

S

1 � pS
I � pS

R

• Definition of the probability density functions:

p~X S
I
ð~x; tj~xI; tIÞ ¼ gS;Ið~x; tj~xI; tIÞ=pS

I ð~x; tjtIÞ

pð~XS
R ;T

S
RÞ
ð~x; tj~xR; tRÞ ¼ gS;Rð~x; tj~xR; tRÞ=pS

Rð~x; tjtIÞ

pð~Y S
F ;T

S
FÞ
ð~x; tj~yF; tFÞ ¼ gS;@OD

S
ð~x; tj~yF; tFÞ=pS

@OD
S
ð~x; tjtIÞ

pð~YS
D ;T

S
DÞ
ð~x; tj~yD; tDÞ ¼ gS;@OD

ð~x; tj~yD; tDÞ=pS
@OD
ð~x; tjtIÞ

• Definition of the random variables:

• ℬðpÞ is a Bernoulli r.v. with parameter p

• ~XS
I is a r.v. with distribution p~XS

I

• ð~XS
R;T

S
RÞ is a paired r.v with distribution pð~XS

R ;T
S
RÞ

• ð~YS
F;T

S
FÞ is a paired r.v with distribution pð~Y S

F ;T
S
F Þ

• ð~YS
D;T

S
DÞ is a paired r.v with distribution pð~Y S

D;T
S
DÞ

which are independent from each others.
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D Definitions for YR;~uð~x; tÞ
This appendix aims at providing the definitions of the random variables and probabilities pres-

ent in expression 25, reported here for the sake of clarity:

YR;~uð~x; tÞ ¼ BðpR
Að~x;~uÞÞyð~X

R
A; tÞ þ ð1 � BðpR

Að~x;~uÞÞÞyR;@OR;~uR
ð~YR

R; tÞ

• Definition of the probabilities:

pR
Að~x;~uÞ ¼

Z

O

Z

S2

gR;Að~x;~uj~x 0;~u 0Þd~u 0d~x 0

pR
Rð~x;~uÞ ¼

Z

@OR

Z

S2
þ

gR;@OR
ð~x;~uj~y;~u 0Þd~u 0d~y

with the relation (under the restriction conditions defined in Eq (8)):

pR
A þ pR

R ¼ 1

• Definition of the probability density functions:

p~XR
A
ð~x;~uj~xAÞ ¼

�Z

S2

gR;Að~x;~uj~xA;~uAÞd~uA

�

=pR
Að~x;~uÞ

pð~YR
R;~uRÞ
ð~x;~uj~yR;~uRÞ ¼ gR;@OR

ð~x;~uj~yR;~uRÞ=pR
Rð~x;~uÞ

• Definition of the random variables:

• ℬðpÞ is a r.v with parameter p

• ~XR
A is the r.v with distribution p~XR

A

• ð~YR
R;
~URÞ is a paired r.v. with distribution pð~YR

R ;
~URÞ

which are independent from each others.

E Random Walk on Sphere and equivalent

For sampling Brownian motion in a confined environment, there are almost only approximate

methods that use numerical parameters on which the accuracy of the method depends [38,

80]. Among the most popular applications, it is worth mentioning the elegance of so-called

“first passage of a trajectory over a fictitious boundary” methods [130, 131].

The most common approach when it comes to sampling contributions according to the

conductive Green function, in a close domain O with a Dirichlet boundary condition, is the

Walk on Sphere proposition [28, 31, 118, 119]. It consists in the random sampling of a point

(both in space and time) over successive spheres of maximal radius, centered on the current

position, as illustrated in Fig 10(a) (spheres are tangent to the boundary of the domain, and

entirely fit inside the domain). From the first passage Green function over a sphere, it is possi-

ble to deduce:

1. a distribution of exit times,
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2. a distribution of exit positions over the sphere (that follows a uniform law when conductiv-

ity λ is uniform!)

3. a distribution of positions inside the sphere, given that information is confined to the inside

of the sphere during the time elapsed from the initial condition.

The numerical strategy in order to find a exit position over the boundary of the domain

consists in setting an arbitrary thickness � to the boundary. As a consequence, a position is

considered to have reached the boundary as soon as its distance to the boundary is less than �

(this is necessary, since the contact between the sphere and O is most of the time reduced to a

point).

With this approximation and using the previously described three distributions, the contri-

bution associated with the current sphere can be sampled. In this case, three situations must be

considered:

• either the initial condition has been reached inside the sphere, and the MC weight is the ini-

tial temperature for the corresponding position, sampled using the distribution of point 3.,

• or a position is reached at the surface of the sphere located at a distance smaller than � from

the boundary, in which case the MC weight is the known temperature at the boundary,

• or a position is reached at the surface of the sphere located at a distance greater than � from

the boundary (at a time that is per construction closer to the initial condition), in which case

recursivity occurs.

A “walk” over spheres therefore emerges, until a boundary condition is reached. First,

thickening the boundary using parameter � is a source of uncertainty. This approximation is

not, in fact, an issue, because the average number of jumps that is required to reach the bound-

ary increases as |log(�)| [31, 130]; it is therefore possible to imagine a value of � that is compati-

ble with the numerical accuracy inherent to the representation of numbers, which is the

limiting approximation. Secondly, the implementation needs, for each jump, to solve an opti-

mization problem: identify the sphere of maximal radius contained inO and centered on the

current position. This optimization problem may be computationally expensive for a high

Fig 10. Illustration of methods based on Green’s function first-passage algorithms. (a) WoS and (b) Walk-on-rectangle-

parallelepiped.

https://doi.org/10.1371/journal.pone.0283681.g010
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level of geometric complexity. Current research on this topic has already been translated in

more efficient intersection libraries [132, 133].

In the same line of thought, recent advances [34, 35, 76, 77] propose an effcient methodol-

ogy in order to sample contributions in a general polyhedral domain with a Dirichlet boundary

condition, as illustrated by Fig 10(b) (the strategy is similar to the Walk on Sphere, but with

parallelepipedic rectangles). This proposition consists in computing the Green function within

a parallelepipedic rectangle of arbitrary dimensions, in order to obtain:

1. a distribution of exit times (that depends on the probe position)

2. a distribution of exit positions (that depends on the probe position and the exit time)

3. a distribution of positions inside the rectangle, knowing that the information remains con-

fined to the inside of the rectangle domain during the time period from the initial condition

(that depends on the probe position and the observation time)

The proposition then consists in a practical and ingenious process to generate parallelepipe-

dic rectangles contained in the polyhedron and containing the probe position, while maximiz-

ing the contact area between this rectangle and the boundary of the polyhedron. It is then

possible, from the three distributions, to sample a contribution associated with the rectangle.

In each case, three situations have to be examined:

• either the initial condition inside the rectangle is reached, and the MC weight is the initial

temperature at the corresponding position,

• or a position is reached at the portion of the surface of the rectangle that is shared with the

surface of the polyhedron, and the MC weight is the imposed boundary temperature,

• or a position is reached at the portion of the surface of the rectangle that is inside the polyhe-

dron (at a time closer to the initial condition), in which case recursivity occurs.

A “walk” on rectangles emerges, until a limit condition is reached. Contrary to the Walk on

Sphere, there is no thickening parameter, making this approach a reference method since the

various contributions are sampled in a exact way. One of the remaining questions, that is cur-

rently not addressed on a theoretical point of view, is the capacity to generate such parallelepi-

pedic rectangles efficiently enough in a complex geometry. Nonetheless, even if it was possible

to produce these volumes in an optimal way, accounting for couplings and heterogeneous

parameters is a consequent additional work that remains to be conducted.

Attempts to address this question were made, notably by trying to sample contributions in

a domain with non-uniform conductivity, as for instance in the case of a discontinuity at an

interface [36, 74, 78, 79], or with Robin or Neumann boundary conditions [104, 134, 135].

F Consistency of the approximate δ-sphere random walk on infinite

domains

In order to investigate the consistency of the approximate model and the convergence speed of

~yS towards θS as a function of δ, a solution to the coupled conducto-radiative tridimensional

model provided by Eqs (51) and (52) will be proposed, while specifying the radiative physics of

interest.

Eq (52) can be seen as the solution of a radiative transfer equation that is obtained after

describing the underlying process. A rather simple way of obtaining this formulation consists

in reformulating the differential radiative transfer equation under its integral form. In the con-

sidered radiative physics, the collisional term is associated to absorption and scattering
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processes for spatially uniform radiative properties. For the needs of the computation pre-

sented in this appendix, the phase function is chosen isotropic. The radiative transfer equation

under its integral form can then be written as:

yRð~x; tÞ ¼
Z

S2

1

4p
d~u
Z þ1

0

kee
� keldl

ka

ke
yS þ

ks

ke
yR

� �

jð~xþ~u l;tÞ

; ðt;~xÞ 2�tI;þ1½�R
3

ð82Þ

Note that using the iterated kernel procedure over the Fredholm Eq (82), the solution

appears as a development of a Neumann series, which formally defines the integration path

space as described by Eq (52). This additionnal step is not useful for the needs of this

appendix.

Using Eq (82), θS and ~yS are respectively the solutions of coupled Eqs (83) and (84). For the

original model,

rC@tyS ¼ lDyS þ zðyR � ySÞ ; ðt;~xÞ 2�tI;þ1½�R
3

ySð~x; tIÞ ¼ yIð~xÞ ;~x 2 R3

yRð~x; tÞ ¼
Z

S2

1

4p
d~u
Z þ1

0

kee
� keldl

ka

ke
yS þ

ks

ke
yR

!

jð~xþ~u l;tÞ

; ðt;~xÞ 2�tI;þ1½�R
3

0

@

ð83Þ

8
>>>>>>><

>>>>>>>:

and for the approximate model,

rC@t
~yS ¼ l

6
R

S2

1

4p
d~u~yS;~u � 6~yS

d
2

0

B
@
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where ka, ks and ke = ka + ks are respectively the absorption, scattering and extinction coeffi-

cients. Let us recall that ~yS;~u �
~ySð~x þ d~u; tÞ and that S2

is the unit sphere of dimension two.

Fourier expansion

~ySð~x; tÞ is obtained by a development over a Fourier basis, in order to get the dispersion rela-

tion for the approximate model. Notation ~̂ySð
~k; tÞ is used for the component on the basis asso-

ciated with the wave vector~k (Fourier transform).
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that is reformulated as follows,

Z
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Using the fact that f~x 7!ei~k :~xg~k2R3 is a Hilbert basis, a relation for each component of the associ-

ated wave vector~k is obtained:
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where D = λ/ρC is the thermal diffusivity. Similarly, the Fourier transform for ~yR is straightfor-

ward:

~̂yR
¼

kaarctan
jj~kjj
ke

 !

jj~kjj � ksarctan
jj~kjj
ke

 ! ~̂yS ð88Þ

Combining Eqs (87) and (88):
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from which it is deduced that:
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where the characteristic time ~t associated to~k verifies:
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Altogether, the analytical solution for ~yS is:

~ySð~x; tÞ ¼
Z

R3

ŷIð
~k; tÞeðt� tI Þ=~tei~k :~xd~k ð92Þ

In order to perform a similar development over the ySð~x; tÞmodel, the Fourier transform of

the finite differences operator has to be replaced by the Fourier transform of the Laplacian

operator:

ySð~x; tÞ ¼
Z

R3

ŷIð
~k; tÞe� ðt� tI Þ=tei~k :~xd~k ð93Þ

Fig 11. Each θS and ~yS curve are the exact solutions of respectively (83) and (84). Points that are denoted MC and

associated errorbars are the solutions of a numerical resolution by MC over the approximate model. The initial

temperature field is: yIð~xÞ ¼ yref þ Acosð~k:~xÞ. Results have been obtained for a characteristic time τ and for position x
2 [0, L], y = z = 0 with~k ¼ ð2p=L; 2p=L; 2p=LÞ, for each figure. The only differentiating parameter for the four figures

is the value of δ that is taken respectively in the {L/2, L/5, L/10 and L/20} set. The scattering radiative coefficient is null

(ks = 0) and the reference temperature θref that is used in coefficient z is chosen so that a equivalent weight is given to

conduction and radiation, through the constraint Djj~kjj2 ¼ zka
rCjj~k jj

arctan
jj~k jj
ke

� �
. (a) δ = L/2, (b) δ = L/5, (c) δ = L/10, and

(d) δ = L/20.

https://doi.org/10.1371/journal.pone.0283681.g011
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where the characteristic time τ associated to~k verifies:
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The consistency of the approximate model is now straightforward:

t ¼ lim
d7!0

~t

and the approximate model converges as δ2:

1

t
� 1~t ¼

6Djj~kjj4

5!
d

2
þ oðd4

Þ ð95Þ

The ~yS model approximation only finds its origin in the Laplacian associated to the diffusive

process. The radiative part is evaluated exactly, which means that in parametric regions where

radiation dominates over conduction, the approximation of the temperature field is nearly

independent of the walk parameter δ.

For illustration purposes, and without seeking completeness, Fig 11 shows how ~yS and θS

temperature fields behave for a given set of parameters that correspond to radiative processes

without scattering (ks = 0) and equivalent weights for the conductive and radiative processes.

It is worth mentioning that, without surprise, the MC computation behaves exactly as the

approximate model whatever the value of the walk parameter δ (MC reconstructs Eq (92)).

Furthermore, it should be noted that for a walking step equal to 1/20 of the characteristic

length, the approximate model and the exact model agree within an outstanding level of

accuracy.
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Mécanique. 2013; p. 1–6.

54. Kovtanyuk AE, Botkin ND, Hoffmann KH. Numerical simulations of a coupled radiative-conductive

heat transfer model using a modified Monte Carlo method. International Journal of Heat and Mass

Transfer. 2012; 55(4):649–654. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.045

55. Kraus H. Hybrid finite element-Monte Carlo method for coupled conduction and gas radiation enclo-

sure heat transport. International journal for numerical methods in engineering. 1988; 26(2):361–378.

https://doi.org/10.1002/nme.1620260206

56. VoYtishek A. Statistical estimation of radiative flows in numerical solution of radiative-conductive heat

transfer problems. Russian Journal of Numerical Analysis and Mathematical Modelling. 1992; 7

(4):343–369. https://doi.org/10.1515/rnam.1992.7.4.343

57. Schwarz K, Rieger H. Efficient kinetic Monte Carlo method for reaction-diffusion problems with spa-

tially varying annihilation rates. Journal of Computational Physics. 2013; 237:396–410. https://doi.org/

10.1016/j.jcp.2012.11.036

58. Bird G. Recent advances and current challenges for DSMC. Computers & Mathematics with Applica-

tions. 1998; 35(1-2):1–14. https://doi.org/10.1016/S0898-1221(97)00254-X

59. Vignoles GL. A hybrid random walk method for the simulation of coupled conduction and linearized

radiation transfer at local scale in porous media with opaque solid phases. International Journal of

Heat and Mass Transfer. 2016; 93:707–719. https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.056

60. Dunn WL, Shultis JK. Exploring monte carlo methods. Elsevier; 2011.

61. Robert CP, Casella G, Casella G. Monte Carlo statistical methods. vol. 2. Springer; 1999.

62. Angel A, Magro M, Pujol P. Physique et outils mathématiques méthodes et exemples: méthodes et
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versity]. Université Clermont Auvergne; 2021. Available from: http://www.theses.fr/2021UCFAC014/

document.

123. Lapeyre P, Blanco S, Caliot C, Dauchet J, El Hafi M, Fournier R, et al. Monte-Carlo and sensitivity

transport models for domain deformation. Journal of Quantitative Spectroscopy and Radiative Trans-

fer. 2020; 251:107022. https://doi.org/10.1016/j.jqsrt.2020.107022

124. Lapeyre P. Un modèle de transfert radiatif pour la sensibilité géométrique: lecture physique des algor-
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